mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-04-05 04:08:58 +08:00
106 lines
3.1 KiB
Python
106 lines
3.1 KiB
Python
# Copyright (c) 2025 SparkAudio
|
|
# 2025 Xinsheng Wang (w.xinshawn@gmail.com)
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from typing import List
|
|
|
|
from spark.sparktts.modules.blocks.vocos import VocosBackbone
|
|
from spark.sparktts.modules.blocks.samper import SamplingBlock
|
|
|
|
|
|
class Encoder(nn.Module):
|
|
"""Encoder module with convnext and downsampling blocks"""
|
|
|
|
def __init__(
|
|
self,
|
|
input_channels: int,
|
|
vocos_dim: int,
|
|
vocos_intermediate_dim: int,
|
|
vocos_num_layers: int,
|
|
out_channels: int,
|
|
sample_ratios: List[int] = [1, 1],
|
|
):
|
|
super().__init__()
|
|
"""
|
|
Encoder module with VocosBackbone and sampling blocks.
|
|
|
|
Args:
|
|
sample_ratios (List[int]): sample ratios
|
|
example: [2, 2] means downsample by 2x and then upsample by 2x
|
|
"""
|
|
self.encoder = VocosBackbone(
|
|
input_channels=input_channels,
|
|
dim=vocos_dim,
|
|
intermediate_dim=vocos_intermediate_dim,
|
|
num_layers=vocos_num_layers,
|
|
condition_dim=None,
|
|
)
|
|
|
|
modules = [
|
|
nn.Sequential(
|
|
SamplingBlock(
|
|
dim=vocos_dim,
|
|
groups=vocos_dim,
|
|
downsample_scale=ratio,
|
|
),
|
|
VocosBackbone(
|
|
input_channels=vocos_dim,
|
|
dim=vocos_dim,
|
|
intermediate_dim=vocos_intermediate_dim,
|
|
num_layers=2,
|
|
condition_dim=None,
|
|
),
|
|
)
|
|
for ratio in sample_ratios
|
|
]
|
|
|
|
self.downsample = nn.Sequential(*modules)
|
|
|
|
self.project = nn.Linear(vocos_dim, out_channels)
|
|
|
|
def forward(self, x: torch.Tensor, *args):
|
|
"""
|
|
Args:
|
|
x (torch.Tensor): (batch_size, input_channels, length)
|
|
|
|
Returns:
|
|
x (torch.Tensor): (batch_size, encode_channels, length)
|
|
"""
|
|
x = self.encoder(x)
|
|
x = self.downsample(x)
|
|
x = self.project(x)
|
|
return x.transpose(1, 2)
|
|
|
|
|
|
# test
|
|
if __name__ == "__main__":
|
|
test_input = torch.randn(8, 1024, 50) # Batch size = 8, 1024 channels, length = 50
|
|
encoder = Encoder(
|
|
input_channels=1024,
|
|
vocos_dim=384,
|
|
vocos_intermediate_dim=2048,
|
|
vocos_num_layers=12,
|
|
out_channels=256,
|
|
sample_ratios=[2, 2],
|
|
)
|
|
|
|
output = encoder(test_input)
|
|
print(output.shape) # torch.Size([8, 256, 12])
|
|
if output.shape == torch.Size([8, 256, 12]):
|
|
print("test successful")
|