mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-04-05 04:08:58 +08:00
252 lines
7.3 KiB
Python
252 lines
7.3 KiB
Python
"""
|
|
Finite Scalar Quantization: VQ-VAE Made Simple - https://arxiv.org/abs/2309.15505
|
|
Code adapted from Jax version in Appendix A.1
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
from functools import wraps, partial
|
|
from contextlib import nullcontext
|
|
from typing import List, Tuple
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.nn import Module
|
|
from torch import Tensor, int32
|
|
from torch.amp import autocast
|
|
|
|
from einops import rearrange, pack, unpack
|
|
|
|
# helper functions
|
|
|
|
|
|
def exists(v):
|
|
return v is not None
|
|
|
|
|
|
def default(*args):
|
|
for arg in args:
|
|
if exists(arg):
|
|
return arg
|
|
return None
|
|
|
|
|
|
def maybe(fn):
|
|
@wraps(fn)
|
|
def inner(x, *args, **kwargs):
|
|
if not exists(x):
|
|
return x
|
|
return fn(x, *args, **kwargs)
|
|
|
|
return inner
|
|
|
|
|
|
def pack_one(t, pattern):
|
|
return pack([t], pattern)
|
|
|
|
|
|
def unpack_one(t, ps, pattern):
|
|
return unpack(t, ps, pattern)[0]
|
|
|
|
|
|
# tensor helpers
|
|
|
|
|
|
def round_ste(z: Tensor) -> Tensor:
|
|
"""Round with straight through gradients."""
|
|
zhat = z.round()
|
|
return z + (zhat - z).detach()
|
|
|
|
|
|
# main class
|
|
|
|
|
|
class FSQ(Module):
|
|
def __init__(
|
|
self,
|
|
levels: List[int],
|
|
dim: int | None = None,
|
|
num_codebooks=1,
|
|
keep_num_codebooks_dim: bool | None = None,
|
|
scale: float | None = None,
|
|
allowed_dtypes: Tuple[torch.dtype, ...] = (torch.float32, torch.float64),
|
|
channel_first: bool = False,
|
|
projection_has_bias: bool = True,
|
|
return_indices=True,
|
|
force_quantization_f32=True,
|
|
):
|
|
super().__init__()
|
|
_levels = torch.tensor(levels, dtype=int32)
|
|
self.register_buffer("_levels", _levels, persistent=False)
|
|
|
|
_basis = torch.cumprod(torch.tensor([1] + levels[:-1]), dim=0, dtype=int32)
|
|
self.register_buffer("_basis", _basis, persistent=False)
|
|
|
|
self.scale = scale
|
|
|
|
codebook_dim = len(levels)
|
|
self.codebook_dim = codebook_dim
|
|
|
|
effective_codebook_dim = codebook_dim * num_codebooks
|
|
self.num_codebooks = num_codebooks
|
|
self.effective_codebook_dim = effective_codebook_dim
|
|
|
|
keep_num_codebooks_dim = default(keep_num_codebooks_dim, num_codebooks > 1)
|
|
assert not (num_codebooks > 1 and not keep_num_codebooks_dim)
|
|
self.keep_num_codebooks_dim = keep_num_codebooks_dim
|
|
|
|
self.dim = default(dim, len(_levels) * num_codebooks)
|
|
|
|
self.channel_first = channel_first
|
|
|
|
has_projections = self.dim != effective_codebook_dim
|
|
self.project_in = (
|
|
nn.Linear(self.dim, effective_codebook_dim, bias=projection_has_bias)
|
|
if has_projections
|
|
else nn.Identity()
|
|
)
|
|
self.project_out = (
|
|
nn.Linear(effective_codebook_dim, self.dim, bias=projection_has_bias)
|
|
if has_projections
|
|
else nn.Identity()
|
|
)
|
|
|
|
self.has_projections = has_projections
|
|
|
|
self.return_indices = return_indices
|
|
if return_indices:
|
|
self.codebook_size = self._levels.prod().item()
|
|
implicit_codebook = self._indices_to_codes(torch.arange(self.codebook_size))
|
|
self.register_buffer(
|
|
"implicit_codebook", implicit_codebook, persistent=False
|
|
)
|
|
|
|
self.allowed_dtypes = allowed_dtypes
|
|
self.force_quantization_f32 = force_quantization_f32
|
|
|
|
def bound(self, z, eps: float = 1e-3):
|
|
"""Bound `z`, an array of shape (..., d)."""
|
|
half_l = (self._levels - 1) * (1 + eps) / 2
|
|
offset = torch.where(self._levels % 2 == 0, 0.5, 0.0)
|
|
shift = (offset / half_l).atanh()
|
|
return (z + shift).tanh() * half_l - offset
|
|
|
|
def quantize(self, z):
|
|
"""Quantizes z, returns quantized zhat, same shape as z."""
|
|
quantized = round_ste(self.bound(z))
|
|
half_width = self._levels // 2 # Renormalize to [-1, 1].
|
|
return quantized / half_width
|
|
|
|
def _scale_and_shift(self, zhat_normalized):
|
|
half_width = self._levels // 2
|
|
return (zhat_normalized * half_width) + half_width
|
|
|
|
def _scale_and_shift_inverse(self, zhat):
|
|
half_width = self._levels // 2
|
|
return (zhat - half_width) / half_width
|
|
|
|
def _indices_to_codes(self, indices):
|
|
level_indices = self.indices_to_level_indices(indices)
|
|
codes = self._scale_and_shift_inverse(level_indices)
|
|
return codes
|
|
|
|
def codes_to_indices(self, zhat):
|
|
"""Converts a `code` to an index in the codebook."""
|
|
assert zhat.shape[-1] == self.codebook_dim
|
|
zhat = self._scale_and_shift(zhat)
|
|
return (zhat * self._basis).sum(dim=-1).to(int32)
|
|
|
|
def indices_to_level_indices(self, indices):
|
|
"""Converts indices to indices at each level, perhaps needed for a transformer with factorized embeddings"""
|
|
indices = rearrange(indices, "... -> ... 1")
|
|
codes_non_centered = (indices // self._basis) % self._levels
|
|
return codes_non_centered
|
|
|
|
def indices_to_codes(self, indices):
|
|
"""Inverse of `codes_to_indices`."""
|
|
assert exists(indices)
|
|
|
|
is_img_or_video = indices.ndim >= (3 + int(self.keep_num_codebooks_dim))
|
|
|
|
codes = self._indices_to_codes(indices)
|
|
|
|
if self.keep_num_codebooks_dim:
|
|
codes = rearrange(codes, "... c d -> ... (c d)")
|
|
|
|
codes = self.project_out(codes)
|
|
|
|
if is_img_or_video or self.channel_first:
|
|
codes = rearrange(codes, "b ... d -> b d ...")
|
|
|
|
return codes
|
|
|
|
def forward(self, z):
|
|
"""
|
|
einstein notation
|
|
b - batch
|
|
n - sequence (or flattened spatial dimensions)
|
|
d - feature dimension
|
|
c - number of codebook dim
|
|
"""
|
|
|
|
is_img_or_video = z.ndim >= 4
|
|
need_move_channel_last = is_img_or_video or self.channel_first
|
|
|
|
# standardize image or video into (batch, seq, dimension)
|
|
|
|
if need_move_channel_last:
|
|
z = rearrange(z, "b d ... -> b ... d")
|
|
z, ps = pack_one(z, "b * d")
|
|
|
|
assert (
|
|
z.shape[-1] == self.dim
|
|
), f"expected dimension of {self.dim} but found dimension of {z.shape[-1]}"
|
|
|
|
z = self.project_in(z)
|
|
|
|
z = rearrange(z, "b n (c d) -> b n c d", c=self.num_codebooks)
|
|
|
|
# whether to force quantization step to be full precision or not
|
|
|
|
force_f32 = self.force_quantization_f32
|
|
quantization_context = (
|
|
partial(autocast, "cuda", enabled=False) if force_f32 else nullcontext
|
|
)
|
|
|
|
with quantization_context():
|
|
orig_dtype = z.dtype
|
|
|
|
if force_f32 and orig_dtype not in self.allowed_dtypes:
|
|
z = z.float()
|
|
|
|
codes = self.quantize(z)
|
|
|
|
# returning indices could be optional
|
|
|
|
indices = None
|
|
|
|
if self.return_indices:
|
|
indices = self.codes_to_indices(codes)
|
|
|
|
codes = rearrange(codes, "b n c d -> b n (c d)")
|
|
|
|
codes = codes.type(orig_dtype)
|
|
|
|
# project out
|
|
|
|
out = self.project_out(codes)
|
|
|
|
# reconstitute image or video dimensions
|
|
|
|
if need_move_channel_last:
|
|
out = unpack_one(out, ps, "b * d")
|
|
out = rearrange(out, "b ... d -> b d ...")
|
|
|
|
indices = maybe(unpack_one)(indices, ps, "b * c")
|
|
|
|
if not self.keep_num_codebooks_dim and self.return_indices:
|
|
indices = maybe(rearrange)(indices, "... 1 -> ...")
|
|
|
|
# return quantized output and indices
|
|
|
|
return out, indices
|