2025-03-20 22:49:54 +02:00

268 lines
7.4 KiB
Python

# Copyright (c) 2021 Zhengyang Chen (chenzhengyang117@gmail.com)
# 2022 Hongji Wang (jijijiang77@gmail.com)
# 2023 Bing Han (hanbing97@sjtu.edu.cn)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" This implementation is adapted from github repo:
https://github.com/lawlict/ECAPA-TDNN.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import spark.sparktts.modules.speaker.pooling_layers as pooling_layers
class Res2Conv1dReluBn(nn.Module):
"""
in_channels == out_channels == channels
"""
def __init__(
self,
channels,
kernel_size=1,
stride=1,
padding=0,
dilation=1,
bias=True,
scale=4,
):
super().__init__()
assert channels % scale == 0, "{} % {} != 0".format(channels, scale)
self.scale = scale
self.width = channels // scale
self.nums = scale if scale == 1 else scale - 1
self.convs = []
self.bns = []
for i in range(self.nums):
self.convs.append(
nn.Conv1d(
self.width,
self.width,
kernel_size,
stride,
padding,
dilation,
bias=bias,
)
)
self.bns.append(nn.BatchNorm1d(self.width))
self.convs = nn.ModuleList(self.convs)
self.bns = nn.ModuleList(self.bns)
def forward(self, x):
out = []
spx = torch.split(x, self.width, 1)
sp = spx[0]
for i, (conv, bn) in enumerate(zip(self.convs, self.bns)):
# Order: conv -> relu -> bn
if i >= 1:
sp = sp + spx[i]
sp = conv(sp)
sp = bn(F.relu(sp))
out.append(sp)
if self.scale != 1:
out.append(spx[self.nums])
out = torch.cat(out, dim=1)
return out
""" Conv1d + BatchNorm1d + ReLU
"""
class Conv1dReluBn(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
dilation=1,
bias=True,
):
super().__init__()
self.conv = nn.Conv1d(
in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias
)
self.bn = nn.BatchNorm1d(out_channels)
def forward(self, x):
return self.bn(F.relu(self.conv(x)))
""" The SE connection of 1D case.
"""
class SE_Connect(nn.Module):
def __init__(self, channels, se_bottleneck_dim=128):
super().__init__()
self.linear1 = nn.Linear(channels, se_bottleneck_dim)
self.linear2 = nn.Linear(se_bottleneck_dim, channels)
def forward(self, x):
out = x.mean(dim=2)
out = F.relu(self.linear1(out))
out = torch.sigmoid(self.linear2(out))
out = x * out.unsqueeze(2)
return out
""" SE-Res2Block of the ECAPA-TDNN architecture.
"""
class SE_Res2Block(nn.Module):
def __init__(self, channels, kernel_size, stride, padding, dilation, scale):
super().__init__()
self.se_res2block = nn.Sequential(
Conv1dReluBn(channels, channels, kernel_size=1, stride=1, padding=0),
Res2Conv1dReluBn(
channels, kernel_size, stride, padding, dilation, scale=scale
),
Conv1dReluBn(channels, channels, kernel_size=1, stride=1, padding=0),
SE_Connect(channels),
)
def forward(self, x):
return x + self.se_res2block(x)
class ECAPA_TDNN(nn.Module):
def __init__(
self,
channels=512,
feat_dim=80,
embed_dim=192,
pooling_func="ASTP",
global_context_att=False,
emb_bn=False,
):
super().__init__()
self.layer1 = Conv1dReluBn(feat_dim, channels, kernel_size=5, padding=2)
self.layer2 = SE_Res2Block(
channels, kernel_size=3, stride=1, padding=2, dilation=2, scale=8
)
self.layer3 = SE_Res2Block(
channels, kernel_size=3, stride=1, padding=3, dilation=3, scale=8
)
self.layer4 = SE_Res2Block(
channels, kernel_size=3, stride=1, padding=4, dilation=4, scale=8
)
cat_channels = channels * 3
out_channels = 512 * 3
self.conv = nn.Conv1d(cat_channels, out_channels, kernel_size=1)
self.pool = getattr(pooling_layers, pooling_func)(
in_dim=out_channels, global_context_att=global_context_att
)
self.pool_out_dim = self.pool.get_out_dim()
self.bn = nn.BatchNorm1d(self.pool_out_dim)
self.linear = nn.Linear(self.pool_out_dim, embed_dim)
self.emb_bn = emb_bn
if emb_bn: # better in SSL for SV
self.bn2 = nn.BatchNorm1d(embed_dim)
else:
self.bn2 = nn.Identity()
def forward(self, x, return_latent=False):
x = x.permute(0, 2, 1) # (B,T,F) -> (B,F,T)
out1 = self.layer1(x)
out2 = self.layer2(out1)
out3 = self.layer3(out2)
out4 = self.layer4(out3)
out = torch.cat([out2, out3, out4], dim=1)
latent = F.relu(self.conv(out))
out = self.bn(self.pool(latent))
out = self.linear(out)
if self.emb_bn:
out = self.bn2(out)
if return_latent:
return out, latent
return out
def ECAPA_TDNN_c1024(feat_dim, embed_dim, pooling_func="ASTP", emb_bn=False):
return ECAPA_TDNN(
channels=1024,
feat_dim=feat_dim,
embed_dim=embed_dim,
pooling_func=pooling_func,
emb_bn=emb_bn,
)
def ECAPA_TDNN_GLOB_c1024(feat_dim, embed_dim, pooling_func="ASTP", emb_bn=False):
return ECAPA_TDNN(
channels=1024,
feat_dim=feat_dim,
embed_dim=embed_dim,
pooling_func=pooling_func,
global_context_att=True,
emb_bn=emb_bn,
)
def ECAPA_TDNN_c512(feat_dim, embed_dim, pooling_func="ASTP", emb_bn=False):
return ECAPA_TDNN(
channels=512,
feat_dim=feat_dim,
embed_dim=embed_dim,
pooling_func=pooling_func,
emb_bn=emb_bn,
)
def ECAPA_TDNN_GLOB_c512(feat_dim, embed_dim, pooling_func="ASTP", emb_bn=False):
return ECAPA_TDNN(
channels=512,
feat_dim=feat_dim,
embed_dim=embed_dim,
pooling_func=pooling_func,
global_context_att=True,
emb_bn=emb_bn,
)
if __name__ == "__main__":
x = torch.zeros(1, 200, 100)
model = ECAPA_TDNN_GLOB_c512(feat_dim=100, embed_dim=256, pooling_func="ASTP")
model.eval()
out, latent = model(x, True)
print(out.shape)
print(latent.shape)
num_params = sum(param.numel() for param in model.parameters())
print("{} M".format(num_params / 1e6))
# from thop import profile
# x_np = torch.randn(1, 200, 80)
# flops, params = profile(model, inputs=(x_np, ))
# print("FLOPs: {} G, Params: {} M".format(flops / 1e9, params / 1e6))