2025-03-20 22:49:54 +02:00

136 lines
4.6 KiB
Python

# Copyright (c) 2025 SparkAudio
# 2025 Xinsheng Wang (w.xinshawn@gmail.com)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn as nn
from typing import List, Tuple
from spark.sparktts.modules.fsq.residual_fsq import ResidualFSQ
from spark.sparktts.modules.speaker.ecapa_tdnn import ECAPA_TDNN_GLOB_c512
from spark.sparktts.modules.speaker.perceiver_encoder import PerceiverResampler
"""
x-vector + d-vector
"""
class SpeakerEncoder(nn.Module):
"""
Args:
input_dim (int): acoustic feature dimension
out_dim (int): output dimension of x-vector and d-vector
latent_dim (int): latent dimension before quantization
token_num (int): sequence length of speaker tokens
fsq_levels (List[int]): number of levels for each quantizer
fsq_num_quantizers (int): number of quantizers
Return:
speaker_embs: (B, T2, out_dim)
"""
def __init__(
self,
input_dim: int = 100,
out_dim: int = 512,
latent_dim: int = 128,
token_num: int = 32,
fsq_levels: List[int] = [4, 4, 4, 4, 4, 4],
fsq_num_quantizers: int = 1,
):
super(SpeakerEncoder, self).__init__()
self.speaker_encoder = ECAPA_TDNN_GLOB_c512(
feat_dim=input_dim, embed_dim=out_dim
)
self.perceiver_sampler = PerceiverResampler(
dim=latent_dim, dim_context=512 * 3, num_latents=token_num
)
self.quantizer = ResidualFSQ(
levels=fsq_levels,
num_quantizers=fsq_num_quantizers,
dim=latent_dim,
is_channel_first=True,
quantize_dropout=False,
)
self.project = nn.Linear(latent_dim * token_num, out_dim)
def get_codes_from_indices(self, indices: torch.Tensor) -> torch.Tensor:
zq = self.quantizer.get_codes_from_indices(indices.transpose(1, 2))
return zq.transpose(1, 2)
def get_indices(self, mels: torch.Tensor) -> torch.Tensor:
mels = mels.transpose(1, 2)
x = self.perceiver_sampler(mels).transpose(1, 2)
zq, indices = self.quantizer(x)
return indices
def forward(self, mels: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
mels: (B, D_mel, T1)
Return:
x_vector: (B, out_dim)
d_vector: (B, out_dim)
"""
# mels = mels.transpose(1,2)
x_vector, features = self.speaker_encoder(mels, True)
x = self.perceiver_sampler(features.transpose(1, 2)).transpose(1, 2)
zq, indices = self.quantizer(x) # zq: (B, latent_dim, T2, latent_dim)
x = zq.reshape(zq.shape[0], -1)
d_vector = self.project(x)
return x_vector, d_vector
def tokenize(self, mels: torch.Tensor) -> torch.Tensor:
"""tokenize the input mel spectrogram"""
_, features = self.speaker_encoder(mels, True)
x = self.perceiver_sampler(features.transpose(1, 2)).transpose(1, 2)
zq, indices = self.quantizer(x)
return indices
def detokenize(self, indices: torch.Tensor) -> torch.Tensor:
"""detokenize the input indices to d-vector"""
zq = self.quantizer.get_output_from_indices(indices.transpose(1, 2)).transpose(1, 2)
x = zq.reshape(zq.shape[0], -1)
d_vector = self.project(x)
return d_vector
if __name__ == "__main__":
model = SpeakerEncoder(
input_dim=100,
latent_dim=128,
token_num=32,
fsq_levels=[4, 4, 4, 4, 4, 4],
fsq_num_quantizers=1,
)
mel = torch.randn(8, 200, 100)
x_vector, d_vector = model(mel)
print("x-vector shape", x_vector.shape)
print("d-vector shape", d_vector.shape)
indices = model.tokenize(mel)
print("indices shape", indices.shape)
d_vector_post = model.detokenize(indices)
print("d-vector shape", d_vector_post.shape)
if d_vector_post.all() == d_vector.all():
print("d-vector post and d-vector are the same")
else:
print("d-vector post and d-vector are different")
num_params = sum(param.numel() for param in model.parameters())
print("{} M".format(num_params / 1e6))