mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-01-04 14:05:04 +08:00
313 lines
12 KiB
Python
313 lines
12 KiB
Python
import os, sys
|
||
import faiss, torch, traceback, parselmouth, numpy as np, torchcrepe, torch.nn as nn, pyworld
|
||
import fairseq
|
||
from lib.infer_pack.models import (
|
||
SynthesizerTrnMs256NSFsid,
|
||
SynthesizerTrnMs256NSFsid_nono,
|
||
SynthesizerTrnMs768NSFsid,
|
||
SynthesizerTrnMs768NSFsid_nono,
|
||
)
|
||
from time import time as ttime
|
||
import torch.nn.functional as F
|
||
import scipy.signal as signal
|
||
|
||
now_dir = os.getcwd()
|
||
sys.path.append(now_dir)
|
||
from config import Config
|
||
from multiprocessing import Manager as M
|
||
|
||
mm = M()
|
||
config = Config()
|
||
if(config.dml==True):
|
||
def forward_dml(ctx, x, scale):
|
||
ctx.scale = scale
|
||
res = x.clone().detach()
|
||
return res
|
||
fairseq.modules.grad_multiply.GradMultiply.forward=forward_dml
|
||
# config.device=torch.device("cpu")########强制cpu测试
|
||
# config.is_half=False########强制cpu测试
|
||
class RVC:
|
||
def __init__(
|
||
self, key, pth_path, index_path, index_rate, n_cpu, inp_q, opt_q, device
|
||
) -> None:
|
||
"""
|
||
初始化
|
||
"""
|
||
try:
|
||
global config
|
||
self.inp_q = inp_q
|
||
self.opt_q = opt_q
|
||
# device="cpu"########强制cpu测试
|
||
self.device = device
|
||
self.f0_up_key = key
|
||
self.time_step = 160 / 16000 * 1000
|
||
self.f0_min = 50
|
||
self.f0_max = 1100
|
||
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
|
||
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
|
||
self.sr = 16000
|
||
self.window = 160
|
||
self.n_cpu = n_cpu
|
||
if index_rate != 0:
|
||
self.index = faiss.read_index(index_path)
|
||
self.big_npy = self.index.reconstruct_n(0, self.index.ntotal)
|
||
print("index search enabled")
|
||
self.index_rate = index_rate
|
||
models, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
|
||
["hubert_base.pt"],
|
||
suffix="",
|
||
)
|
||
hubert_model = models[0]
|
||
hubert_model = hubert_model.to(config.device)
|
||
if config.is_half:
|
||
hubert_model = hubert_model.half()
|
||
else:
|
||
hubert_model = hubert_model.float()
|
||
hubert_model.eval()
|
||
self.model = hubert_model
|
||
cpt = torch.load(pth_path, map_location="cpu")
|
||
self.tgt_sr = cpt["config"][-1]
|
||
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
|
||
self.if_f0 = cpt.get("f0", 1)
|
||
self.version = cpt.get("version", "v1")
|
||
if self.version == "v1":
|
||
if self.if_f0 == 1:
|
||
self.net_g = SynthesizerTrnMs256NSFsid(
|
||
*cpt["config"], is_half=config.is_half
|
||
)
|
||
else:
|
||
self.net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
||
elif self.version == "v2":
|
||
if self.if_f0 == 1:
|
||
self.net_g = SynthesizerTrnMs768NSFsid(
|
||
*cpt["config"], is_half=config.is_half
|
||
)
|
||
else:
|
||
self.net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
||
del self.net_g.enc_q
|
||
print(self.net_g.load_state_dict(cpt["weight"], strict=False))
|
||
self.net_g.eval().to(device)
|
||
# print(2333333333,device,config.device,self.device)#net_g是device,hubert是config.device
|
||
if config.is_half:
|
||
self.net_g = self.net_g.half()
|
||
else:
|
||
self.net_g = self.net_g.float()
|
||
self.is_half = config.is_half
|
||
except:
|
||
print(traceback.format_exc())
|
||
|
||
def get_f0_post(self, f0):
|
||
f0_min = self.f0_min
|
||
f0_max = self.f0_max
|
||
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
||
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
||
f0bak = f0.copy()
|
||
f0_mel = 1127 * np.log(1 + f0 / 700)
|
||
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
||
f0_mel_max - f0_mel_min
|
||
) + 1
|
||
f0_mel[f0_mel <= 1] = 1
|
||
f0_mel[f0_mel > 255] = 255
|
||
f0_coarse = np.rint(f0_mel).astype(np.int32)
|
||
return f0_coarse, f0bak
|
||
|
||
def get_f0(self, x, f0_up_key, n_cpu, method="harvest"):
|
||
n_cpu = int(n_cpu)
|
||
if method == "crepe":
|
||
return self.get_f0_crepe(x, f0_up_key)
|
||
if method == "rmvpe":
|
||
return self.get_f0_rmvpe(x, f0_up_key)
|
||
if method == "pm":
|
||
p_len = x.shape[0] // 160
|
||
f0 = (
|
||
parselmouth.Sound(x, 16000)
|
||
.to_pitch_ac(
|
||
time_step=0.01,
|
||
voicing_threshold=0.6,
|
||
pitch_floor=50,
|
||
pitch_ceiling=1100,
|
||
)
|
||
.selected_array["frequency"]
|
||
)
|
||
|
||
pad_size = (p_len - len(f0) + 1) // 2
|
||
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
||
# print(pad_size, p_len - len(f0) - pad_size)
|
||
f0 = np.pad(
|
||
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
||
)
|
||
|
||
f0 *= pow(2, f0_up_key / 12)
|
||
return self.get_f0_post(f0)
|
||
if n_cpu == 1:
|
||
f0, t = pyworld.harvest(
|
||
x.astype(np.double),
|
||
fs=16000,
|
||
f0_ceil=1100,
|
||
f0_floor=50,
|
||
frame_period=10,
|
||
)
|
||
f0 = signal.medfilt(f0, 3)
|
||
f0 *= pow(2, f0_up_key / 12)
|
||
return self.get_f0_post(f0)
|
||
f0bak = np.zeros(x.shape[0] // 160, dtype=np.float64)
|
||
length = len(x)
|
||
part_length = int(length / n_cpu / 160) * 160
|
||
ts = ttime()
|
||
res_f0 = mm.dict()
|
||
for idx in range(n_cpu):
|
||
tail = part_length * (idx + 1) + 320
|
||
if idx == 0:
|
||
self.inp_q.put((idx, x[:tail], res_f0, n_cpu, ts))
|
||
else:
|
||
self.inp_q.put(
|
||
(idx, x[part_length * idx - 320 : tail], res_f0, n_cpu, ts)
|
||
)
|
||
while 1:
|
||
res_ts = self.opt_q.get()
|
||
if res_ts == ts:
|
||
break
|
||
f0s = [i[1] for i in sorted(res_f0.items(), key=lambda x: x[0])]
|
||
for idx, f0 in enumerate(f0s):
|
||
if idx == 0:
|
||
f0 = f0[:-3]
|
||
elif idx != n_cpu - 1:
|
||
f0 = f0[2:-3]
|
||
else:
|
||
f0 = f0[2:-1]
|
||
f0bak[
|
||
part_length * idx // 160 : part_length * idx // 160 + f0.shape[0]
|
||
] = f0
|
||
f0bak = signal.medfilt(f0bak, 3)
|
||
f0bak *= pow(2, f0_up_key / 12)
|
||
return self.get_f0_post(f0bak)
|
||
|
||
def get_f0_crepe(self, x, f0_up_key):
|
||
if self.device.type == "privateuseone":###不支持dml,cpu又太慢用不成,拿pm顶替
|
||
return self.get_f0(x, f0_up_key,1,"pm")
|
||
audio = torch.tensor(np.copy(x))[None].float()
|
||
# print("using crepe,device:%s"%self.device)
|
||
f0, pd = torchcrepe.predict(
|
||
audio,
|
||
self.sr,
|
||
160,
|
||
self.f0_min,
|
||
self.f0_max,
|
||
"full",
|
||
batch_size=512,
|
||
# device=self.device if self.device.type!="privateuseone" else "cpu",###crepe不用半精度全部是全精度所以不愁###cpu延迟高到没法用
|
||
device=self.device,
|
||
return_periodicity=True,
|
||
)
|
||
pd = torchcrepe.filter.median(pd, 3)
|
||
f0 = torchcrepe.filter.mean(f0, 3)
|
||
f0[pd < 0.1] = 0
|
||
f0 = f0[0].cpu().numpy()
|
||
f0 *= pow(2, f0_up_key / 12)
|
||
return self.get_f0_post(f0)
|
||
|
||
def get_f0_rmvpe(self, x, f0_up_key):
|
||
if hasattr(self, "model_rmvpe") == False:
|
||
from lib.rmvpe import RMVPE
|
||
print("loading rmvpe model")
|
||
self.model_rmvpe = RMVPE(
|
||
# "rmvpe.pt", is_half=self.is_half if self.device.type!="privateuseone" else False, device=self.device if self.device.type!="privateuseone"else "cpu"####dml时强制对rmvpe用cpu跑
|
||
# "rmvpe.pt", is_half=False, device=self.device####dml配置
|
||
# "rmvpe.pt", is_half=False, device="cpu"####锁定cpu配置
|
||
"rmvpe.pt", is_half=self.is_half, device=self.device####正常逻辑
|
||
)
|
||
# self.model_rmvpe = RMVPE("aug2_58000_half.pt", is_half=self.is_half, device=self.device)
|
||
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
|
||
f0 *= pow(2, f0_up_key / 12)
|
||
return self.get_f0_post(f0)
|
||
|
||
def infer(
|
||
self,
|
||
feats: torch.Tensor,
|
||
indata: np.ndarray,
|
||
rate1,
|
||
rate2,
|
||
cache_pitch,
|
||
cache_pitchf,
|
||
f0method,
|
||
) -> np.ndarray:
|
||
feats = feats.view(1, -1)
|
||
if config.is_half:
|
||
feats = feats.half()
|
||
else:
|
||
feats = feats.float()
|
||
feats = feats.to(self.device)
|
||
t1 = ttime()
|
||
with torch.no_grad():
|
||
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
|
||
inputs = {
|
||
"source": feats,
|
||
"padding_mask": padding_mask,
|
||
"output_layer": 9 if self.version == "v1" else 12,
|
||
}
|
||
logits = self.model.extract_features(**inputs)
|
||
feats = (
|
||
self.model.final_proj(logits[0]) if self.version == "v1" else logits[0]
|
||
)
|
||
t2 = ttime()
|
||
try:
|
||
if hasattr(self, "index") and self.index_rate != 0:
|
||
leng_replace_head = int(rate1 * feats[0].shape[0])
|
||
npy = feats[0][-leng_replace_head:].cpu().numpy().astype("float32")
|
||
score, ix = self.index.search(npy, k=8)
|
||
weight = np.square(1 / score)
|
||
weight /= weight.sum(axis=1, keepdims=True)
|
||
npy = np.sum(self.big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
|
||
if config.is_half:
|
||
npy = npy.astype("float16")
|
||
feats[0][-leng_replace_head:] = (
|
||
torch.from_numpy(npy).unsqueeze(0).to(self.device) * self.index_rate
|
||
+ (1 - self.index_rate) * feats[0][-leng_replace_head:]
|
||
)
|
||
else:
|
||
print("index search FAIL or disabled")
|
||
except:
|
||
traceback.print_exc()
|
||
print("index search FAIL")
|
||
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
||
t3 = ttime()
|
||
if self.if_f0 == 1:
|
||
pitch, pitchf = self.get_f0(indata, self.f0_up_key, self.n_cpu, f0method)
|
||
cache_pitch[:] = np.append(cache_pitch[pitch[:-1].shape[0] :], pitch[:-1])
|
||
cache_pitchf[:] = np.append(
|
||
cache_pitchf[pitchf[:-1].shape[0] :], pitchf[:-1]
|
||
)
|
||
p_len = min(feats.shape[1], 13000, cache_pitch.shape[0])
|
||
else:
|
||
cache_pitch, cache_pitchf = None, None
|
||
p_len = min(feats.shape[1], 13000)
|
||
t4 = ttime()
|
||
feats = feats[:, :p_len, :]
|
||
if self.if_f0 == 1:
|
||
cache_pitch = cache_pitch[:p_len]
|
||
cache_pitchf = cache_pitchf[:p_len]
|
||
cache_pitch = torch.LongTensor(cache_pitch).unsqueeze(0).to(self.device)
|
||
cache_pitchf = torch.FloatTensor(cache_pitchf).unsqueeze(0).to(self.device)
|
||
p_len = torch.LongTensor([p_len]).to(self.device)
|
||
ii = 0 # sid
|
||
sid = torch.LongTensor([ii]).to(self.device)
|
||
with torch.no_grad():
|
||
if self.if_f0 == 1:
|
||
# print(12222222222,feats.device,p_len.device,cache_pitch.device,cache_pitchf.device,sid.device,rate2)
|
||
infered_audio = (
|
||
self.net_g.infer(
|
||
feats, p_len, cache_pitch, cache_pitchf, sid, rate2
|
||
)[0][0, 0]
|
||
.data.cpu()
|
||
.float()
|
||
)
|
||
else:
|
||
infered_audio = (
|
||
self.net_g.infer(feats, p_len, sid, rate2)[0][0, 0]
|
||
.data.cpu()
|
||
.float()
|
||
)
|
||
t5 = ttime()
|
||
print("time->fea-index-f0-model:", t2 - t1, t3 - t2, t4 - t3, t5 - t4)
|
||
return infered_audio
|