Retrieval-based-Voice-Conve.../infer/lib/infer_pack/commons.py
github-actions[bot] e9dd11bddb
chore(sync): merge dev into main (#1379)
* Optimize latency (#1259)

* add attribute:   configs/config.py
	Optimize latency:   tools/rvc_for_realtime.py

* new file:   assets/Synthesizer_inputs.pth

* fix:   configs/config.py
	fix:   tools/rvc_for_realtime.py

* fix bug:   infer/lib/infer_pack/models.py

* new file:   assets/hubert_inputs.pth
	new file:   assets/rmvpe_inputs.pth
	modified:   configs/config.py
	new features:   infer/lib/rmvpe.py
	new features:   tools/jit_export/__init__.py
	new features:   tools/jit_export/get_hubert.py
	new features:   tools/jit_export/get_rmvpe.py
	new features:   tools/jit_export/get_synthesizer.py
	optimize:   tools/rvc_for_realtime.py

* optimize:   tools/jit_export/get_synthesizer.py
	fix bug:   tools/jit_export/__init__.py

* Fixed a bug caused by using half on the CPU:   infer/lib/rmvpe.py
	Fixed a bug caused by using half on the CPU:   tools/jit_export/__init__.py
	Fixed CIRCULAR IMPORT:   tools/jit_export/get_rmvpe.py
	Fixed CIRCULAR IMPORT:   tools/jit_export/get_synthesizer.py
	Fixed a bug caused by using half on the CPU:   tools/rvc_for_realtime.py

* Remove useless code:   infer/lib/rmvpe.py

* Delete gui_v1 copy.py

* Delete .vscode/launch.json

* Delete jit_export_test.py

* Delete tools/rvc_for_realtime copy.py

* Delete configs/config.json

* Delete .gitignore

* Fix exceptions caused by switching inference devices:   infer/lib/rmvpe.py
	Fix exceptions caused by switching inference devices:   tools/jit_export/__init__.py
	Fix exceptions caused by switching inference devices:   tools/rvc_for_realtime.py

* restore

* replace(you can undo this commit)

* remove debug_print

---------

Co-authored-by: Ftps <ftpsflandre@gmail.com>

* Fixed some bugs when exporting ONNX model (#1254)

* fix import (#1280)

* fix import

* lint

* 🎨 同步 locale (#1242)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* Fix jit load and import issue (#1282)

* fix jit model loading :   infer/lib/rmvpe.py

* modified:   assets/hubert/.gitignore
	move file:    assets/hubert_inputs.pth -> assets/hubert/hubert_inputs.pth
	modified:   assets/rmvpe/.gitignore
	move file:    assets/rmvpe_inputs.pth -> assets/rmvpe/rmvpe_inputs.pth
	fix import:   gui_v1.py

* feat(workflow): trigger on dev

* feat(workflow): add close-pr on non-dev branch

* Add input wav and delay time monitor for real-time gui (#1293)

* feat(workflow): trigger on dev

* feat(workflow): add close-pr on non-dev branch

* 🎨 同步 locale (#1289)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* feat: edit PR template

* add input wav and delay time monitor

---------

Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: RVC-Boss <129054828+RVC-Boss@users.noreply.github.com>

* Optimize latency using scripted jit (#1291)

* feat(workflow): trigger on dev

* feat(workflow): add close-pr on non-dev branch

* 🎨 同步 locale (#1289)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* feat: edit PR template

* Optimize-latency-using-scripted:   configs/config.py
	Optimize-latency-using-scripted:   infer/lib/infer_pack/attentions.py
	Optimize-latency-using-scripted:   infer/lib/infer_pack/commons.py
	Optimize-latency-using-scripted:   infer/lib/infer_pack/models.py
	Optimize-latency-using-scripted:   infer/lib/infer_pack/modules.py
	Optimize-latency-using-scripted:   infer/lib/jit/__init__.py
	Optimize-latency-using-scripted:   infer/lib/jit/get_hubert.py
	Optimize-latency-using-scripted:   infer/lib/jit/get_rmvpe.py
	Optimize-latency-using-scripted:   infer/lib/jit/get_synthesizer.py
	Optimize-latency-using-scripted:   infer/lib/rmvpe.py
	Optimize-latency-using-scripted:   tools/rvc_for_realtime.py

* modified:   infer/lib/infer_pack/models.py

* fix some bug:   configs/config.py
	fix some bug:   infer/lib/infer_pack/models.py
	fix some bug:   infer/lib/rmvpe.py

* Fixed abnormal reference of logger in multiprocessing:   infer/modules/train/train.py

---------

Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* Format code (#1298)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* 🎨 同步 locale (#1299)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* feat: optimize actions

* feat(workflow): add sync dev

* feat: optimize actions

* feat: optimize actions

* feat: optimize actions

* feat: optimize actions

* feat: add jit options (#1303)

Delete useless code:   infer/lib/jit/get_synthesizer.py
	Optimized code:   tools/rvc_for_realtime.py

* Code refactor + re-design inference ui (#1304)

* Code refacor + re-design inference ui

* Fix tabname

* i18n jp

---------

Co-authored-by: Ftps <ftpsflandre@gmail.com>

* feat: optimize actions

* feat: optimize actions

* Update README & en_US locale file (#1309)

* critical: some bug fixes (#1322)

* JIT acceleration switch does not support hot update

* fix padding bug of rmvpe in torch-directml

* fix padding bug of rmvpe in torch-directml

* Fix STFT under torch_directml (#1330)

* chore(format): run black on dev (#1318)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* chore(i18n): sync locale on dev (#1317)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* feat: allow for tta to be passed to uvr (#1361)

* chore(format): run black on dev (#1373)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* Added script for automatically download all needed models at install (#1366)

* Delete modules.py

* Add files via upload

* Add files via upload

* Add files via upload

* Add files via upload

* chore(i18n): sync locale on dev (#1377)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* chore(format): run black on dev (#1376)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* Update IPEX library (#1362)

* Update IPEX library

* Update ipex index

* chore(format): run black on dev (#1378)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

---------

Co-authored-by: Chengjia Jiang <46401978+ChasonJiang@users.noreply.github.com>
Co-authored-by: Ftps <ftpsflandre@gmail.com>
Co-authored-by: shizuku_nia <102004222+ShizukuNia@users.noreply.github.com>
Co-authored-by: Ftps <63702646+Tps-F@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
Co-authored-by: yxlllc <33565655+yxlllc@users.noreply.github.com>
Co-authored-by: RVC-Boss <129054828+RVC-Boss@users.noreply.github.com>
Co-authored-by: Blaise <133521603+blaise-tk@users.noreply.github.com>
Co-authored-by: Rice Cake <gak141808@gmail.com>
Co-authored-by: AWAS666 <33494149+AWAS666@users.noreply.github.com>
Co-authored-by: Dmitry <nda2911@yandex.ru>
Co-authored-by: Disty0 <47277141+Disty0@users.noreply.github.com>
2023-10-06 17:14:33 +08:00

173 lines
5.4 KiB
Python

from typing import List, Optional
import math
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
def init_weights(m, mean=0.0, std=0.01):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.normal_(mean, std)
def get_padding(kernel_size, dilation=1):
return int((kernel_size * dilation - dilation) / 2)
# def convert_pad_shape(pad_shape):
# l = pad_shape[::-1]
# pad_shape = [item for sublist in l for item in sublist]
# return pad_shape
def kl_divergence(m_p, logs_p, m_q, logs_q):
"""KL(P||Q)"""
kl = (logs_q - logs_p) - 0.5
kl += (
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
)
return kl
def rand_gumbel(shape):
"""Sample from the Gumbel distribution, protect from overflows."""
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
return -torch.log(-torch.log(uniform_samples))
def rand_gumbel_like(x):
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
return g
def slice_segments(x, ids_str, segment_size=4):
ret = torch.zeros_like(x[:, :, :segment_size])
for i in range(x.size(0)):
idx_str = ids_str[i]
idx_end = idx_str + segment_size
ret[i] = x[i, :, idx_str:idx_end]
return ret
def slice_segments2(x, ids_str, segment_size=4):
ret = torch.zeros_like(x[:, :segment_size])
for i in range(x.size(0)):
idx_str = ids_str[i]
idx_end = idx_str + segment_size
ret[i] = x[i, idx_str:idx_end]
return ret
def rand_slice_segments(x, x_lengths=None, segment_size=4):
b, d, t = x.size()
if x_lengths is None:
x_lengths = t
ids_str_max = x_lengths - segment_size + 1
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
ret = slice_segments(x, ids_str, segment_size)
return ret, ids_str
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
position = torch.arange(length, dtype=torch.float)
num_timescales = channels // 2
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
num_timescales - 1
)
inv_timescales = min_timescale * torch.exp(
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
)
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
signal = F.pad(signal, [0, 0, 0, channels % 2])
signal = signal.view(1, channels, length)
return signal
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
b, channels, length = x.size()
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
return x + signal.to(dtype=x.dtype, device=x.device)
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
b, channels, length = x.size()
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
def subsequent_mask(length):
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
return mask
@torch.jit.script
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
n_channels_int = n_channels[0]
in_act = input_a + input_b
t_act = torch.tanh(in_act[:, :n_channels_int, :])
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
acts = t_act * s_act
return acts
# def convert_pad_shape(pad_shape):
# l = pad_shape[::-1]
# pad_shape = [item for sublist in l for item in sublist]
# return pad_shape
def convert_pad_shape(pad_shape: List[List[int]]) -> List[int]:
return torch.tensor(pad_shape).flip(0).reshape(-1).int().tolist()
def shift_1d(x):
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
return x
def sequence_mask(length: torch.Tensor, max_length: Optional[int] = None):
if max_length is None:
max_length = length.max()
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
return x.unsqueeze(0) < length.unsqueeze(1)
def generate_path(duration, mask):
"""
duration: [b, 1, t_x]
mask: [b, 1, t_y, t_x]
"""
device = duration.device
b, _, t_y, t_x = mask.shape
cum_duration = torch.cumsum(duration, -1)
cum_duration_flat = cum_duration.view(b * t_x)
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
path = path.view(b, t_x, t_y)
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
path = path.unsqueeze(1).transpose(2, 3) * mask
return path
def clip_grad_value_(parameters, clip_value, norm_type=2):
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = list(filter(lambda p: p.grad is not None, parameters))
norm_type = float(norm_type)
if clip_value is not None:
clip_value = float(clip_value)
total_norm = 0
for p in parameters:
param_norm = p.grad.data.norm(norm_type)
total_norm += param_norm.item() ** norm_type
if clip_value is not None:
p.grad.data.clamp_(min=-clip_value, max=clip_value)
total_norm = total_norm ** (1.0 / norm_type)
return total_norm