mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-01-01 12:35:04 +08:00
956 lines
42 KiB
Python
956 lines
42 KiB
Python
import os
|
||
import sys
|
||
from dotenv import load_dotenv
|
||
|
||
load_dotenv()
|
||
|
||
os.environ["OMP_NUM_THREADS"] = "4"
|
||
if sys.platform == "darwin":
|
||
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
||
|
||
now_dir = os.getcwd()
|
||
sys.path.append(now_dir)
|
||
import multiprocessing
|
||
|
||
flag_vc = False
|
||
|
||
def printt(strr, *args):
|
||
if len(args) == 0:
|
||
print(strr)
|
||
else:
|
||
print(strr % args)
|
||
|
||
|
||
def phase_vocoder(a, b, fade_out, fade_in):
|
||
window = torch.sqrt(fade_out * fade_in)
|
||
fa = torch.fft.rfft(a * window)
|
||
fb = torch.fft.rfft(b * window)
|
||
absab = torch.abs(fa) + torch.abs(fb)
|
||
n = a.shape[0]
|
||
if n % 2 == 0:
|
||
absab[1:-1] *= 2
|
||
else:
|
||
absab[1:] *= 2
|
||
phia = torch.angle(fa)
|
||
phib = torch.angle(fb)
|
||
deltaphase = phib - phia
|
||
deltaphase = deltaphase - 2 * np.pi * torch.floor(deltaphase / 2 / np.pi + 0.5)
|
||
w = 2 * np.pi * torch.arange(n // 2 + 1).to(a) + deltaphase
|
||
t = torch.arange(n).unsqueeze(-1).to(a) / n
|
||
result = (
|
||
a * (fade_out**2)
|
||
+ b * (fade_in**2)
|
||
+ torch.sum(absab * torch.cos(w * t + phia), -1) * window / n
|
||
)
|
||
return result
|
||
|
||
|
||
class Harvest(multiprocessing.Process):
|
||
def __init__(self, inp_q, opt_q):
|
||
multiprocessing.Process.__init__(self)
|
||
self.inp_q = inp_q
|
||
self.opt_q = opt_q
|
||
|
||
def run(self):
|
||
import numpy as np
|
||
import pyworld
|
||
|
||
while 1:
|
||
idx, x, res_f0, n_cpu, ts = self.inp_q.get()
|
||
f0, t = pyworld.harvest(
|
||
x.astype(np.double),
|
||
fs=16000,
|
||
f0_ceil=1100,
|
||
f0_floor=50,
|
||
frame_period=10,
|
||
)
|
||
res_f0[idx] = f0
|
||
if len(res_f0.keys()) >= n_cpu:
|
||
self.opt_q.put(ts)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
import json
|
||
import multiprocessing
|
||
import re
|
||
import threading
|
||
import time
|
||
import traceback
|
||
from multiprocessing import Queue, cpu_count
|
||
from queue import Empty
|
||
|
||
import librosa
|
||
from tools.torchgate import TorchGate
|
||
import numpy as np
|
||
import PySimpleGUI as sg
|
||
import sounddevice as sd
|
||
import torch
|
||
import torch.nn.functional as F
|
||
import torchaudio.transforms as tat
|
||
|
||
import tools.rvc_for_realtime as rvc_for_realtime
|
||
from i18n.i18n import I18nAuto
|
||
from configs.config import Config
|
||
|
||
i18n = I18nAuto()
|
||
|
||
# device = rvc_for_realtime.config.device
|
||
# device = torch.device(
|
||
# "cuda"
|
||
# if torch.cuda.is_available()
|
||
# else ("mps" if torch.backends.mps.is_available() else "cpu")
|
||
# )
|
||
current_dir = os.getcwd()
|
||
inp_q = Queue()
|
||
opt_q = Queue()
|
||
n_cpu = min(cpu_count(), 8)
|
||
for _ in range(n_cpu):
|
||
Harvest(inp_q, opt_q).start()
|
||
|
||
class GUIConfig:
|
||
def __init__(self) -> None:
|
||
self.pth_path: str = ""
|
||
self.index_path: str = ""
|
||
self.pitch: int = 0
|
||
self.sr_type: str = "sr_model"
|
||
self.block_time: float = 0.25 # s
|
||
self.threhold: int = -60
|
||
self.crossfade_time: float = 0.05
|
||
self.extra_time: float = 2.5
|
||
self.I_noise_reduce: bool = False
|
||
self.O_noise_reduce: bool = False
|
||
self.use_pv: bool = False
|
||
self.rms_mix_rate: float = 0.0
|
||
self.index_rate: float = 0.0
|
||
self.n_cpu: int = min(n_cpu, 4)
|
||
self.f0method: str = "fcpe"
|
||
self.sg_input_device: str = ""
|
||
self.sg_output_device: str = ""
|
||
|
||
class GUI:
|
||
def __init__(self) -> None:
|
||
self.gui_config = GUIConfig()
|
||
self.config = Config()
|
||
self.function = "vc"
|
||
self.delay_time = 0
|
||
self.input_devices = None
|
||
self.output_devices = None
|
||
self.input_devices_indices = None
|
||
self.output_devices_indices = None
|
||
self.stream = None
|
||
self.update_devices()
|
||
self.launcher()
|
||
|
||
def load(self):
|
||
try:
|
||
with open("configs/config.json", "r") as j:
|
||
data = json.load(j)
|
||
data["sr_model"] = data["sr_type"] == "sr_model"
|
||
data["sr_device"] = data["sr_type"] == "sr_device"
|
||
data["pm"] = data["f0method"] == "pm"
|
||
data["harvest"] = data["f0method"] == "harvest"
|
||
data["crepe"] = data["f0method"] == "crepe"
|
||
data["rmvpe"] = data["f0method"] == "rmvpe"
|
||
data["fcpe"] = data["f0method"] == "fcpe"
|
||
if data["sg_input_device"] not in self.input_devices:
|
||
data["sg_input_device"] = self.input_devices[self.input_devices_indices.index(sd.default.device[0])]
|
||
if data["sg_output_device"] not in self.output_devices:
|
||
data["sg_output_device"] = self.output_devices[self.output_devices_indices.index(sd.default.device[1])]
|
||
except:
|
||
with open("configs/config.json", "w") as j:
|
||
data = {
|
||
"pth_path": "",
|
||
"index_path": "",
|
||
"sg_input_device": self.input_devices[self.input_devices_indices.index(sd.default.device[0])],
|
||
"sg_output_device": self.output_devices[self.output_devices_indices.index(sd.default.device[1])],
|
||
"sr_type": "sr_model",
|
||
"threhold": -60,
|
||
"pitch": 0,
|
||
"index_rate": 0,
|
||
"rms_mix_rate": 0,
|
||
"block_time": 0.25,
|
||
"crossfade_length": 0.05,
|
||
"extra_time": 2.5,
|
||
"n_cpu": 4,
|
||
"f0method": "rmvpe",
|
||
"use_jit": False,
|
||
"use_pv": False,
|
||
}
|
||
data["sr_model"] = data["sr_type"] == "sr_model"
|
||
data["sr_device"] = data["sr_type"] == "sr_device"
|
||
data["pm"] = data["f0method"] == "pm"
|
||
data["harvest"] = data["f0method"] == "harvest"
|
||
data["crepe"] = data["f0method"] == "crepe"
|
||
data["rmvpe"] = data["f0method"] == "rmvpe"
|
||
data["fcpe"] = data["f0method"] == "fcpe"
|
||
return data
|
||
|
||
def launcher(self):
|
||
data = self.load()
|
||
self.config.use_jit = False # data.get("use_jit", self.config.use_jit)
|
||
sg.theme("LightBlue3")
|
||
layout = [
|
||
[
|
||
sg.Frame(
|
||
title=i18n("加载模型"),
|
||
layout=[
|
||
[
|
||
sg.Input(
|
||
default_text=data.get("pth_path", ""),
|
||
key="pth_path",
|
||
),
|
||
sg.FileBrowse(
|
||
i18n("选择.pth文件"),
|
||
initial_folder=os.path.join(
|
||
os.getcwd(), "assets/weights"
|
||
),
|
||
file_types=((". pth"),),
|
||
),
|
||
],
|
||
[
|
||
sg.Input(
|
||
default_text=data.get("index_path", ""),
|
||
key="index_path",
|
||
),
|
||
sg.FileBrowse(
|
||
i18n("选择.index文件"),
|
||
initial_folder=os.path.join(os.getcwd(), "logs"),
|
||
file_types=((". index"),),
|
||
),
|
||
],
|
||
],
|
||
)
|
||
],
|
||
[
|
||
sg.Frame(
|
||
layout=[
|
||
[
|
||
sg.Text(i18n("输入设备")),
|
||
sg.Combo(
|
||
self.input_devices,
|
||
key="sg_input_device",
|
||
default_value=data.get("sg_input_device", ""),
|
||
),
|
||
],
|
||
[
|
||
sg.Text(i18n("输出设备")),
|
||
sg.Combo(
|
||
self.output_devices,
|
||
key="sg_output_device",
|
||
default_value=data.get("sg_output_device", ""),
|
||
),
|
||
],
|
||
[
|
||
sg.Button(i18n("重载设备列表"), key="reload_devices"),
|
||
sg.Radio(
|
||
i18n("使用模型采样率"),
|
||
"sr_type",
|
||
key="sr_model",
|
||
default=data.get("sr_model", True),
|
||
enable_events=True,
|
||
),
|
||
sg.Radio(
|
||
i18n("使用设备采样率"),
|
||
"sr_type",
|
||
key="sr_device",
|
||
default=data.get("sr_device", False),
|
||
enable_events=True,
|
||
),
|
||
sg.Text(i18n("采样率:")),
|
||
sg.Text("", key="sr_stream"),
|
||
],
|
||
],
|
||
title=i18n("音频设备(请使用同种类驱动)"),
|
||
)
|
||
],
|
||
[
|
||
sg.Frame(
|
||
layout=[
|
||
[
|
||
sg.Text(i18n("响应阈值")),
|
||
sg.Slider(
|
||
range=(-60, 0),
|
||
key="threhold",
|
||
resolution=1,
|
||
orientation="h",
|
||
default_value=data.get("threhold", -60),
|
||
enable_events=True,
|
||
),
|
||
],
|
||
[
|
||
sg.Text(i18n("音调设置")),
|
||
sg.Slider(
|
||
range=(-24, 24),
|
||
key="pitch",
|
||
resolution=1,
|
||
orientation="h",
|
||
default_value=data.get("pitch", 0),
|
||
enable_events=True,
|
||
),
|
||
],
|
||
[
|
||
sg.Text(i18n("Index Rate")),
|
||
sg.Slider(
|
||
range=(0.0, 1.0),
|
||
key="index_rate",
|
||
resolution=0.01,
|
||
orientation="h",
|
||
default_value=data.get("index_rate", 0),
|
||
enable_events=True,
|
||
),
|
||
],
|
||
[
|
||
sg.Text(i18n("响度因子")),
|
||
sg.Slider(
|
||
range=(0.0, 1.0),
|
||
key="rms_mix_rate",
|
||
resolution=0.01,
|
||
orientation="h",
|
||
default_value=data.get("rms_mix_rate", 0),
|
||
enable_events=True,
|
||
),
|
||
],
|
||
[
|
||
sg.Text(i18n("音高算法")),
|
||
sg.Radio(
|
||
"pm",
|
||
"f0method",
|
||
key="pm",
|
||
default=data.get("pm", False),
|
||
enable_events=True,
|
||
),
|
||
sg.Radio(
|
||
"harvest",
|
||
"f0method",
|
||
key="harvest",
|
||
default=data.get("harvest", False),
|
||
enable_events=True,
|
||
),
|
||
sg.Radio(
|
||
"crepe",
|
||
"f0method",
|
||
key="crepe",
|
||
default=data.get("crepe", False),
|
||
enable_events=True,
|
||
),
|
||
sg.Radio(
|
||
"rmvpe",
|
||
"f0method",
|
||
key="rmvpe",
|
||
default=data.get("rmvpe", False),
|
||
enable_events=True,
|
||
),
|
||
sg.Radio(
|
||
"fcpe",
|
||
"f0method",
|
||
key="fcpe",
|
||
default=data.get("fcpe", True),
|
||
enable_events=True,
|
||
),
|
||
],
|
||
],
|
||
title=i18n("常规设置"),
|
||
),
|
||
sg.Frame(
|
||
layout=[
|
||
[
|
||
sg.Text(i18n("采样长度")),
|
||
sg.Slider(
|
||
range=(0.02, 2.4),
|
||
key="block_time",
|
||
resolution=0.01,
|
||
orientation="h",
|
||
default_value=data.get("block_time", 0.25),
|
||
enable_events=True,
|
||
),
|
||
],
|
||
# [
|
||
# sg.Text("设备延迟"),
|
||
# sg.Slider(
|
||
# range=(0, 1),
|
||
# key="device_latency",
|
||
# resolution=0.001,
|
||
# orientation="h",
|
||
# default_value=data.get("device_latency", 0.1),
|
||
# enable_events=True,
|
||
# ),
|
||
# ],
|
||
[
|
||
sg.Text(i18n("harvest进程数")),
|
||
sg.Slider(
|
||
range=(1, n_cpu),
|
||
key="n_cpu",
|
||
resolution=1,
|
||
orientation="h",
|
||
default_value=data.get(
|
||
"n_cpu", min(self.gui_config.n_cpu, n_cpu)
|
||
),
|
||
enable_events=True,
|
||
),
|
||
],
|
||
[
|
||
sg.Text(i18n("淡入淡出长度")),
|
||
sg.Slider(
|
||
range=(0.01, 0.15),
|
||
key="crossfade_length",
|
||
resolution=0.01,
|
||
orientation="h",
|
||
default_value=data.get("crossfade_length", 0.05),
|
||
enable_events=True,
|
||
),
|
||
],
|
||
[
|
||
sg.Text(i18n("额外推理时长")),
|
||
sg.Slider(
|
||
range=(0.05, 5.00),
|
||
key="extra_time",
|
||
resolution=0.01,
|
||
orientation="h",
|
||
default_value=data.get("extra_time", 2.5),
|
||
enable_events=True,
|
||
),
|
||
],
|
||
[
|
||
sg.Checkbox(
|
||
i18n("输入降噪"),
|
||
key="I_noise_reduce",
|
||
enable_events=True,
|
||
),
|
||
sg.Checkbox(
|
||
i18n("输出降噪"),
|
||
key="O_noise_reduce",
|
||
enable_events=True,
|
||
),
|
||
sg.Checkbox(
|
||
i18n("启用相位声码器"),
|
||
key="use_pv",
|
||
default=data.get("use_pv", False),
|
||
enable_events=True,
|
||
),
|
||
# sg.Checkbox(
|
||
# "JIT加速",
|
||
# default=self.config.use_jit,
|
||
# key="use_jit",
|
||
# enable_events=False,
|
||
# ),
|
||
],
|
||
# [sg.Text("注:首次使用JIT加速时,会出现卡顿,\n 并伴随一些噪音,但这是正常现象!")],
|
||
],
|
||
title=i18n("性能设置"),
|
||
),
|
||
],
|
||
[
|
||
sg.Button(i18n("开始音频转换"), key="start_vc"),
|
||
sg.Button(i18n("停止音频转换"), key="stop_vc"),
|
||
sg.Radio(
|
||
i18n("输入监听"),
|
||
"function",
|
||
key="im",
|
||
default=False,
|
||
enable_events=True,
|
||
),
|
||
sg.Radio(
|
||
i18n("输出变声"),
|
||
"function",
|
||
key="vc",
|
||
default=True,
|
||
enable_events=True,
|
||
),
|
||
sg.Text(i18n("算法延迟(ms):")),
|
||
sg.Text("0", key="delay_time"),
|
||
sg.Text(i18n("推理时间(ms):")),
|
||
sg.Text("0", key="infer_time"),
|
||
],
|
||
]
|
||
self.window = sg.Window("RVC - GUI", layout=layout, finalize=True)
|
||
self.event_handler()
|
||
|
||
def event_handler(self):
|
||
global flag_vc
|
||
while True:
|
||
event, values = self.window.read()
|
||
if event == sg.WINDOW_CLOSED:
|
||
self.stop_stream()
|
||
exit()
|
||
if event == "reload_devices":
|
||
self.update_devices()
|
||
if self.gui_config.sg_input_device not in self.input_devices:
|
||
self.gui_config.sg_input_device = self.input_devices[0]
|
||
self.window["sg_input_device"].Update(values=self.input_devices)
|
||
self.window["sg_input_device"].Update(
|
||
value=self.gui_config.sg_input_device
|
||
)
|
||
if self.gui_config.sg_output_device not in self.output_devices:
|
||
self.gui_config.sg_output_device = self.output_devices[0]
|
||
self.window["sg_output_device"].Update(values=self.output_devices)
|
||
self.window["sg_output_device"].Update(
|
||
value=self.gui_config.sg_output_device
|
||
)
|
||
if event == "start_vc" and not flag_vc:
|
||
if self.set_values(values) == True:
|
||
printt("cuda_is_available: %s", torch.cuda.is_available())
|
||
self.start_vc()
|
||
settings = {
|
||
"pth_path": values["pth_path"],
|
||
"index_path": values["index_path"],
|
||
"sg_input_device": values["sg_input_device"],
|
||
"sg_output_device": values["sg_output_device"],
|
||
"sr_type": ["sr_model", "sr_device"][
|
||
[
|
||
values["sr_model"],
|
||
values["sr_device"],
|
||
].index(True)
|
||
],
|
||
"threhold": values["threhold"],
|
||
"pitch": values["pitch"],
|
||
"rms_mix_rate": values["rms_mix_rate"],
|
||
"index_rate": values["index_rate"],
|
||
# "device_latency": values["device_latency"],
|
||
"block_time": values["block_time"],
|
||
"crossfade_length": values["crossfade_length"],
|
||
"extra_time": values["extra_time"],
|
||
"n_cpu": values["n_cpu"],
|
||
# "use_jit": values["use_jit"],
|
||
"use_jit": False,
|
||
"use_pv": values["use_pv"],
|
||
"f0method": ["pm", "harvest", "crepe", "rmvpe", "fcpe"][
|
||
[
|
||
values["pm"],
|
||
values["harvest"],
|
||
values["crepe"],
|
||
values["rmvpe"],
|
||
values["fcpe"],
|
||
].index(True)
|
||
],
|
||
}
|
||
with open("configs/config.json", "w") as j:
|
||
json.dump(settings, j)
|
||
if self.stream is not None:
|
||
self.delay_time = (
|
||
self.stream.latency[-1]
|
||
+ values["block_time"]
|
||
+ values["crossfade_length"]
|
||
+ 0.01
|
||
)
|
||
if values["I_noise_reduce"]:
|
||
self.delay_time += min(values["crossfade_length"], 0.04)
|
||
self.window["sr_stream"].update(self.gui_config.samplerate)
|
||
self.window["delay_time"].update(int(self.delay_time * 1000))
|
||
# Parameter hot update
|
||
if event == "threhold":
|
||
self.gui_config.threhold = values["threhold"]
|
||
elif event == "pitch":
|
||
self.gui_config.pitch = values["pitch"]
|
||
if hasattr(self, "rvc"):
|
||
self.rvc.change_key(values["pitch"])
|
||
elif event == "index_rate":
|
||
self.gui_config.index_rate = values["index_rate"]
|
||
if hasattr(self, "rvc"):
|
||
self.rvc.change_index_rate(values["index_rate"])
|
||
elif event == "rms_mix_rate":
|
||
self.gui_config.rms_mix_rate = values["rms_mix_rate"]
|
||
elif event in ["pm", "harvest", "crepe", "rmvpe", "fcpe"]:
|
||
self.gui_config.f0method = event
|
||
elif event == "I_noise_reduce":
|
||
self.gui_config.I_noise_reduce = values["I_noise_reduce"]
|
||
if self.stream is not None:
|
||
self.delay_time += (
|
||
1 if values["I_noise_reduce"] else -1
|
||
) * min(values["crossfade_length"], 0.04)
|
||
self.window["delay_time"].update(int(self.delay_time * 1000))
|
||
elif event == "O_noise_reduce":
|
||
self.gui_config.O_noise_reduce = values["O_noise_reduce"]
|
||
elif event == "use_pv":
|
||
self.gui_config.use_pv = values["use_pv"]
|
||
elif event in ["vc", "im"]:
|
||
self.function = event
|
||
elif event == "stop_vc" or event != "start_vc":
|
||
# Other parameters do not support hot update
|
||
self.stop_stream()
|
||
|
||
def set_values(self, values):
|
||
if len(values["pth_path"].strip()) == 0:
|
||
sg.popup(i18n("请选择pth文件"))
|
||
return False
|
||
if len(values["index_path"].strip()) == 0:
|
||
sg.popup(i18n("请选择index文件"))
|
||
return False
|
||
pattern = re.compile("[^\x00-\x7F]+")
|
||
if pattern.findall(values["pth_path"]):
|
||
sg.popup(i18n("pth文件路径不可包含中文"))
|
||
return False
|
||
if pattern.findall(values["index_path"]):
|
||
sg.popup(i18n("index文件路径不可包含中文"))
|
||
return False
|
||
self.set_devices(values["sg_input_device"], values["sg_output_device"])
|
||
self.config.use_jit = False # values["use_jit"]
|
||
# self.device_latency = values["device_latency"]
|
||
self.gui_config.sg_input_device = values["sg_input_device"]
|
||
self.gui_config.sg_output_device = values["sg_output_device"]
|
||
self.gui_config.pth_path = values["pth_path"]
|
||
self.gui_config.index_path = values["index_path"]
|
||
self.gui_config.sr_type = ["sr_model", "sr_device"][
|
||
[
|
||
values["sr_model"],
|
||
values["sr_device"],
|
||
].index(True)
|
||
]
|
||
self.gui_config.threhold = values["threhold"]
|
||
self.gui_config.pitch = values["pitch"]
|
||
self.gui_config.block_time = values["block_time"]
|
||
self.gui_config.crossfade_time = values["crossfade_length"]
|
||
self.gui_config.extra_time = values["extra_time"]
|
||
self.gui_config.I_noise_reduce = values["I_noise_reduce"]
|
||
self.gui_config.O_noise_reduce = values["O_noise_reduce"]
|
||
self.gui_config.use_pv = values["use_pv"]
|
||
self.gui_config.rms_mix_rate = values["rms_mix_rate"]
|
||
self.gui_config.index_rate = values["index_rate"]
|
||
self.gui_config.n_cpu = values["n_cpu"]
|
||
self.gui_config.f0method = ["pm", "harvest", "crepe", "rmvpe", "fcpe"][
|
||
[
|
||
values["pm"],
|
||
values["harvest"],
|
||
values["crepe"],
|
||
values["rmvpe"],
|
||
values["fcpe"],
|
||
].index(True)
|
||
]
|
||
return True
|
||
|
||
def start_vc(self):
|
||
torch.cuda.empty_cache()
|
||
self.rvc = rvc_for_realtime.RVC(
|
||
self.gui_config.pitch,
|
||
self.gui_config.pth_path,
|
||
self.gui_config.index_path,
|
||
self.gui_config.index_rate,
|
||
self.gui_config.n_cpu,
|
||
inp_q,
|
||
opt_q,
|
||
self.config,
|
||
self.rvc if hasattr(self, "rvc") else None,
|
||
)
|
||
self.gui_config.samplerate = (
|
||
self.rvc.tgt_sr
|
||
if self.gui_config.sr_type == "sr_model"
|
||
else self.get_device_samplerate()
|
||
)
|
||
self.zc = self.gui_config.samplerate // 100
|
||
self.block_frame = (
|
||
int(
|
||
np.round(
|
||
self.gui_config.block_time
|
||
* self.gui_config.samplerate
|
||
/ self.zc
|
||
)
|
||
)
|
||
* self.zc
|
||
)
|
||
self.block_frame_16k = 160 * self.block_frame // self.zc
|
||
self.crossfade_frame = (
|
||
int(
|
||
np.round(
|
||
self.gui_config.crossfade_time
|
||
* self.gui_config.samplerate
|
||
/ self.zc
|
||
)
|
||
)
|
||
* self.zc
|
||
)
|
||
self.sola_buffer_frame = min(self.crossfade_frame, 4 * self.zc)
|
||
self.sola_search_frame = self.zc
|
||
self.extra_frame = (
|
||
int(
|
||
np.round(
|
||
self.gui_config.extra_time
|
||
* self.gui_config.samplerate
|
||
/ self.zc
|
||
)
|
||
)
|
||
* self.zc
|
||
)
|
||
self.input_wav: torch.Tensor = torch.zeros(
|
||
self.extra_frame
|
||
+ self.crossfade_frame
|
||
+ self.sola_search_frame
|
||
+ self.block_frame,
|
||
device=self.config.device,
|
||
dtype=torch.float32,
|
||
)
|
||
self.input_wav_res: torch.Tensor = torch.zeros(
|
||
160 * self.input_wav.shape[0] // self.zc,
|
||
device=self.config.device,
|
||
dtype=torch.float32,
|
||
)
|
||
self.sola_buffer: torch.Tensor = torch.zeros(
|
||
self.sola_buffer_frame, device=self.config.device, dtype=torch.float32
|
||
)
|
||
self.nr_buffer: torch.Tensor = self.sola_buffer.clone()
|
||
self.output_buffer: torch.Tensor = self.input_wav.clone()
|
||
self.res_buffer: torch.Tensor = torch.zeros(
|
||
2 * self.zc, device=self.config.device, dtype=torch.float32
|
||
)
|
||
self.skip_head = self.extra_frame // self.zc
|
||
self.return_length = (
|
||
self.block_frame + self.sola_buffer_frame + self.sola_search_frame
|
||
) // self.zc
|
||
self.fade_in_window: torch.Tensor = (
|
||
torch.sin(
|
||
0.5
|
||
* np.pi
|
||
* torch.linspace(
|
||
0.0,
|
||
1.0,
|
||
steps=self.sola_buffer_frame,
|
||
device=self.config.device,
|
||
dtype=torch.float32,
|
||
)
|
||
)
|
||
** 2
|
||
)
|
||
self.fade_out_window: torch.Tensor = 1 - self.fade_in_window
|
||
self.resampler = tat.Resample(
|
||
orig_freq=self.gui_config.samplerate,
|
||
new_freq=16000,
|
||
dtype=torch.float32,
|
||
).to(self.config.device)
|
||
if self.rvc.tgt_sr != self.gui_config.samplerate:
|
||
self.resampler2 = tat.Resample(
|
||
orig_freq=self.rvc.tgt_sr,
|
||
new_freq=self.gui_config.samplerate,
|
||
dtype=torch.float32,
|
||
).to(self.config.device)
|
||
else:
|
||
self.resampler2 = None
|
||
self.tg = TorchGate(
|
||
sr=self.gui_config.samplerate, n_fft=4 * self.zc, prop_decrease=0.9
|
||
).to(self.config.device)
|
||
self.start_stream()
|
||
|
||
def start_stream(self):
|
||
global flag_vc
|
||
if not flag_vc:
|
||
flag_vc = True
|
||
channels = 1 if sys.platform == "darwin" else 2
|
||
self.stream = sd.Stream(
|
||
channels=channels,
|
||
callback=self.audio_callback,
|
||
blocksize=self.block_frame,
|
||
samplerate=self.gui_config.samplerate,
|
||
dtype="float32")
|
||
self.stream.start()
|
||
|
||
def stop_stream(self):
|
||
global flag_vc
|
||
if flag_vc:
|
||
flag_vc = False
|
||
if self.stream is not None:
|
||
self.stream.stop()
|
||
self.stream.close()
|
||
self.stream = None
|
||
|
||
def audio_callback(
|
||
self, indata: np.ndarray, outdata: np.ndarray, frames, times, status
|
||
):
|
||
"""
|
||
音频处理
|
||
"""
|
||
global flag_vc
|
||
start_time = time.perf_counter()
|
||
indata = librosa.to_mono(indata.T)
|
||
if self.gui_config.threhold > -60:
|
||
rms = librosa.feature.rms(
|
||
y=indata, frame_length=4 * self.zc, hop_length=self.zc
|
||
)
|
||
db_threhold = (
|
||
librosa.amplitude_to_db(rms, ref=1.0)[0] < self.gui_config.threhold
|
||
)
|
||
for i in range(db_threhold.shape[0]):
|
||
if db_threhold[i]:
|
||
indata[i * self.zc : (i + 1) * self.zc] = 0
|
||
self.input_wav[: -self.block_frame] = self.input_wav[
|
||
self.block_frame :
|
||
].clone()
|
||
self.input_wav[-self.block_frame :] = torch.from_numpy(indata).to(
|
||
self.config.device
|
||
)
|
||
self.input_wav_res[: -self.block_frame_16k] = self.input_wav_res[
|
||
self.block_frame_16k :
|
||
].clone()
|
||
# input noise reduction and resampling
|
||
if self.gui_config.I_noise_reduce and self.function == "vc":
|
||
input_wav = self.input_wav[
|
||
-self.sola_buffer_frame - self.block_frame - 2 * self.zc :
|
||
]
|
||
input_wav = self.tg(
|
||
input_wav.unsqueeze(0), self.input_wav.unsqueeze(0)
|
||
)[0, 2 * self.zc :]
|
||
input_wav[: self.sola_buffer_frame] *= self.fade_in_window
|
||
input_wav[: self.sola_buffer_frame] += (
|
||
self.nr_buffer * self.fade_out_window
|
||
)
|
||
self.nr_buffer[:] = input_wav[self.block_frame :]
|
||
input_wav = torch.cat(
|
||
(self.res_buffer[:], input_wav[: self.block_frame])
|
||
)
|
||
self.res_buffer[:] = input_wav[-2 * self.zc :]
|
||
self.input_wav_res[-self.block_frame_16k - 160 :] = self.resampler(
|
||
input_wav
|
||
)[160:]
|
||
else:
|
||
self.input_wav_res[-self.block_frame_16k - 160 :] = self.resampler(
|
||
self.input_wav[-self.block_frame - 2 * self.zc :]
|
||
)[160:]
|
||
# infer
|
||
if self.function == "vc":
|
||
infer_wav = self.rvc.infer(
|
||
self.input_wav_res,
|
||
self.block_frame_16k,
|
||
self.skip_head,
|
||
self.return_length,
|
||
self.gui_config.f0method,
|
||
)
|
||
if self.resampler2 is not None:
|
||
infer_wav = self.resampler2(infer_wav)
|
||
else:
|
||
infer_wav = self.input_wav[
|
||
-self.crossfade_frame - self.sola_search_frame - self.block_frame :
|
||
].clone()
|
||
# output noise reduction
|
||
if (self.gui_config.O_noise_reduce and self.function == "vc") or (
|
||
self.gui_config.I_noise_reduce and self.function == "im"
|
||
):
|
||
self.output_buffer[: -self.block_frame] = self.output_buffer[
|
||
self.block_frame :
|
||
].clone()
|
||
self.output_buffer[-self.block_frame :] = infer_wav[-self.block_frame :]
|
||
infer_wav = self.tg(
|
||
infer_wav.unsqueeze(0), self.output_buffer.unsqueeze(0)
|
||
).squeeze(0)
|
||
# volume envelop mixing
|
||
if self.gui_config.rms_mix_rate < 1 and self.function == "vc":
|
||
rms1 = librosa.feature.rms(
|
||
y=self.input_wav_res[
|
||
160
|
||
* self.skip_head : 160
|
||
* (self.skip_head + self.return_length)
|
||
]
|
||
.cpu()
|
||
.numpy(),
|
||
frame_length=640,
|
||
hop_length=160,
|
||
)
|
||
rms1 = torch.from_numpy(rms1).to(self.config.device)
|
||
rms1 = F.interpolate(
|
||
rms1.unsqueeze(0),
|
||
size=infer_wav.shape[0] + 1,
|
||
mode="linear",
|
||
align_corners=True,
|
||
)[0, 0, :-1]
|
||
rms2 = librosa.feature.rms(
|
||
y=infer_wav[:].cpu().numpy(),
|
||
frame_length=4 * self.zc,
|
||
hop_length=self.zc,
|
||
)
|
||
rms2 = torch.from_numpy(rms2).to(self.config.device)
|
||
rms2 = F.interpolate(
|
||
rms2.unsqueeze(0),
|
||
size=infer_wav.shape[0] + 1,
|
||
mode="linear",
|
||
align_corners=True,
|
||
)[0, 0, :-1]
|
||
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-3)
|
||
infer_wav *= torch.pow(
|
||
rms1 / rms2, torch.tensor(1 - self.gui_config.rms_mix_rate)
|
||
)
|
||
# SOLA algorithm from https://github.com/yxlllc/DDSP-SVC
|
||
conv_input = infer_wav[
|
||
None, None, : self.sola_buffer_frame + self.sola_search_frame
|
||
]
|
||
cor_nom = F.conv1d(conv_input, self.sola_buffer[None, None, :])
|
||
cor_den = torch.sqrt(
|
||
F.conv1d(
|
||
conv_input**2,
|
||
torch.ones(1, 1, self.sola_buffer_frame, device=self.config.device),
|
||
)
|
||
+ 1e-8
|
||
)
|
||
if sys.platform == "darwin":
|
||
_, sola_offset = torch.max(cor_nom[0, 0] / cor_den[0, 0])
|
||
sola_offset = sola_offset.item()
|
||
else:
|
||
sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0])
|
||
printt("sola_offset = %d", int(sola_offset))
|
||
infer_wav = infer_wav[sola_offset:]
|
||
if "privateuseone" in str(self.config.device) or not self.gui_config.use_pv:
|
||
infer_wav[: self.sola_buffer_frame] *= self.fade_in_window
|
||
infer_wav[: self.sola_buffer_frame] += (
|
||
self.sola_buffer * self.fade_out_window
|
||
)
|
||
else:
|
||
infer_wav[: self.sola_buffer_frame] = phase_vocoder(
|
||
self.sola_buffer,
|
||
infer_wav[: self.sola_buffer_frame],
|
||
self.fade_out_window,
|
||
self.fade_in_window,
|
||
)
|
||
self.sola_buffer[:] = infer_wav[
|
||
self.block_frame : self.block_frame + self.sola_buffer_frame
|
||
]
|
||
if sys.platform == "darwin":
|
||
outdata[:] = infer_wav[: self.block_frame].cpu().numpy()[:, np.newaxis]
|
||
else:
|
||
outdata[:] = (
|
||
infer_wav[: self.block_frame].repeat(2, 1).t().cpu().numpy()
|
||
)
|
||
total_time = time.perf_counter() - start_time
|
||
if flag_vc:
|
||
self.window["infer_time"].update(int(total_time * 1000))
|
||
printt("Infer time: %.2f", total_time)
|
||
|
||
def update_devices(self):
|
||
"""获取设备列表"""
|
||
sd._terminate()
|
||
sd._initialize()
|
||
devices = sd.query_devices()
|
||
hostapis = sd.query_hostapis()
|
||
for hostapi in hostapis:
|
||
for device_idx in hostapi["devices"]:
|
||
devices[device_idx]["hostapi_name"] = hostapi["name"]
|
||
self.input_devices = [
|
||
f"{d['name']} ({d['hostapi_name']})"
|
||
for d in devices
|
||
if d["max_input_channels"] > 0
|
||
]
|
||
self.output_devices = [
|
||
f"{d['name']} ({d['hostapi_name']})"
|
||
for d in devices
|
||
if d["max_output_channels"] > 0
|
||
]
|
||
self.input_devices_indices = [
|
||
d["index"] if "index" in d else d["name"]
|
||
for d in devices
|
||
if d["max_input_channels"] > 0
|
||
]
|
||
self.output_devices_indices = [
|
||
d["index"] if "index" in d else d["name"]
|
||
for d in devices
|
||
if d["max_output_channels"] > 0
|
||
]
|
||
|
||
def set_devices(self, input_device, output_device):
|
||
"""设置输出设备"""
|
||
sd.default.device[0] = self.input_devices_indices[
|
||
self.input_devices.index(input_device)
|
||
]
|
||
sd.default.device[1] = self.output_devices_indices[
|
||
self.output_devices.index(output_device)
|
||
]
|
||
printt("Input device: %s:%s", str(sd.default.device[0]), input_device)
|
||
printt("Output device: %s:%s", str(sd.default.device[1]), output_device)
|
||
|
||
def get_device_samplerate(self):
|
||
return int(sd.query_devices(device=sd.default.device[0])['default_samplerate'])
|
||
|
||
gui = GUI()
|