mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2024-12-29 02:55:05 +08:00
216 lines
7.0 KiB
Python
216 lines
7.0 KiB
Python
"""
|
|
v1
|
|
runtime\python.exe myinfer-v2-0528.py 0 "E:\codes\py39\RVC-beta\todo-songs" "E:\codes\py39\logs\mi-test\added_IVF677_Flat_nprobe_7.index" harvest "E:\codes\py39\RVC-beta\output" "E:\codes\py39\test-20230416b\weights\mi-test.pth" 0.66 cuda:0 True 3 0 1 0.33
|
|
v2
|
|
runtime\python.exe myinfer-v2-0528.py 0 "E:\codes\py39\RVC-beta\todo-songs" "E:\codes\py39\test-20230416b\logs\mi-test-v2\aadded_IVF677_Flat_nprobe_1_v2.index" harvest "E:\codes\py39\RVC-beta\output_v2" "E:\codes\py39\test-20230416b\weights\mi-test-v2.pth" 0.66 cuda:0 True 3 0 1 0.33
|
|
"""
|
|
import os, sys, pdb, torch
|
|
|
|
now_dir = os.getcwd()
|
|
sys.path.append(now_dir)
|
|
import sys
|
|
import torch
|
|
import tqdm as tq
|
|
from multiprocessing import cpu_count
|
|
|
|
|
|
class Config:
|
|
def __init__(self, device, is_half):
|
|
self.device = device
|
|
self.is_half = is_half
|
|
self.n_cpu = 0
|
|
self.gpu_name = None
|
|
self.gpu_mem = None
|
|
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
|
|
|
|
def device_config(self) -> tuple:
|
|
if torch.cuda.is_available():
|
|
i_device = int(self.device.split(":")[-1])
|
|
self.gpu_name = torch.cuda.get_device_name(i_device)
|
|
if (
|
|
("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
|
|
or "P40" in self.gpu_name.upper()
|
|
or "1060" in self.gpu_name
|
|
or "1070" in self.gpu_name
|
|
or "1080" in self.gpu_name
|
|
):
|
|
print("16系/10系显卡和P40强制单精度")
|
|
self.is_half = False
|
|
for config_file in ["32k.json", "40k.json", "48k.json"]:
|
|
with open(f"configs/{config_file}", "r") as f:
|
|
strr = f.read().replace("true", "false")
|
|
with open(f"configs/{config_file}", "w") as f:
|
|
f.write(strr)
|
|
with open("trainset_preprocess_pipeline_print.py", "r") as f:
|
|
strr = f.read().replace("3.7", "3.0")
|
|
with open("trainset_preprocess_pipeline_print.py", "w") as f:
|
|
f.write(strr)
|
|
else:
|
|
self.gpu_name = None
|
|
self.gpu_mem = int(
|
|
torch.cuda.get_device_properties(i_device).total_memory
|
|
/ 1024
|
|
/ 1024
|
|
/ 1024
|
|
+ 0.4
|
|
)
|
|
if self.gpu_mem <= 4:
|
|
with open("trainset_preprocess_pipeline_print.py", "r") as f:
|
|
strr = f.read().replace("3.7", "3.0")
|
|
with open("trainset_preprocess_pipeline_print.py", "w") as f:
|
|
f.write(strr)
|
|
elif torch.backends.mps.is_available():
|
|
print("没有发现支持的N卡, 使用MPS进行推理")
|
|
self.device = "mps"
|
|
else:
|
|
print("没有发现支持的N卡, 使用CPU进行推理")
|
|
self.device = "cpu"
|
|
self.is_half = True
|
|
|
|
if self.n_cpu == 0:
|
|
self.n_cpu = cpu_count()
|
|
|
|
if self.is_half:
|
|
# 6G显存配置
|
|
x_pad = 3
|
|
x_query = 10
|
|
x_center = 60
|
|
x_max = 65
|
|
else:
|
|
# 5G显存配置
|
|
x_pad = 1
|
|
x_query = 6
|
|
x_center = 38
|
|
x_max = 41
|
|
|
|
if self.gpu_mem != None and self.gpu_mem <= 4:
|
|
x_pad = 1
|
|
x_query = 5
|
|
x_center = 30
|
|
x_max = 32
|
|
|
|
return x_pad, x_query, x_center, x_max
|
|
|
|
|
|
f0up_key = sys.argv[1]
|
|
input_path = sys.argv[2]
|
|
index_path = sys.argv[3]
|
|
f0method = sys.argv[4] # harvest or pm
|
|
opt_path = sys.argv[5]
|
|
model_path = sys.argv[6]
|
|
index_rate = float(sys.argv[7])
|
|
device = sys.argv[8]
|
|
is_half = sys.argv[9].lower() != "false"
|
|
filter_radius = int(sys.argv[10])
|
|
resample_sr = int(sys.argv[11])
|
|
rms_mix_rate = float(sys.argv[12])
|
|
protect = float(sys.argv[13])
|
|
print(sys.argv)
|
|
config = Config(device, is_half)
|
|
now_dir = os.getcwd()
|
|
sys.path.append(now_dir)
|
|
from vc_infer_pipeline import VC
|
|
from lib.infer_pack.models import (
|
|
SynthesizerTrnMs256NSFsid,
|
|
SynthesizerTrnMs256NSFsid_nono,
|
|
SynthesizerTrnMs768NSFsid,
|
|
SynthesizerTrnMs768NSFsid_nono,
|
|
)
|
|
from my_utils import load_audio
|
|
from fairseq import checkpoint_utils
|
|
from scipy.io import wavfile
|
|
|
|
hubert_model = None
|
|
|
|
|
|
def load_hubert():
|
|
global hubert_model
|
|
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
|
|
["hubert_base.pt"],
|
|
suffix="",
|
|
)
|
|
hubert_model = models[0]
|
|
hubert_model = hubert_model.to(device)
|
|
if is_half:
|
|
hubert_model = hubert_model.half()
|
|
else:
|
|
hubert_model = hubert_model.float()
|
|
hubert_model.eval()
|
|
|
|
|
|
def vc_single(sid, input_audio, f0_up_key, f0_file, f0_method, file_index, index_rate):
|
|
global tgt_sr, net_g, vc, hubert_model, version
|
|
if input_audio is None:
|
|
return "You need to upload an audio", None
|
|
f0_up_key = int(f0_up_key)
|
|
audio = load_audio(input_audio, 16000)
|
|
times = [0, 0, 0]
|
|
if hubert_model == None:
|
|
load_hubert()
|
|
if_f0 = cpt.get("f0", 1)
|
|
# audio_opt=vc.pipeline(hubert_model,net_g,sid,audio,times,f0_up_key,f0_method,file_index,file_big_npy,index_rate,if_f0,f0_file=f0_file)
|
|
audio_opt = vc.pipeline(
|
|
hubert_model,
|
|
net_g,
|
|
sid,
|
|
audio,
|
|
input_audio,
|
|
times,
|
|
f0_up_key,
|
|
f0_method,
|
|
file_index,
|
|
index_rate,
|
|
if_f0,
|
|
filter_radius,
|
|
tgt_sr,
|
|
resample_sr,
|
|
rms_mix_rate,
|
|
version,
|
|
protect,
|
|
f0_file=f0_file,
|
|
)
|
|
print(times)
|
|
return audio_opt
|
|
|
|
|
|
def get_vc(model_path):
|
|
global n_spk, tgt_sr, net_g, vc, cpt, device, is_half, version
|
|
print("loading pth %s" % model_path)
|
|
cpt = torch.load(model_path, map_location="cpu")
|
|
tgt_sr = cpt["config"][-1]
|
|
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
|
if_f0 = cpt.get("f0", 1)
|
|
version = cpt.get("version", "v1")
|
|
if version == "v1":
|
|
if if_f0 == 1:
|
|
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half)
|
|
else:
|
|
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
|
elif version == "v2":
|
|
if if_f0 == 1: #
|
|
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=is_half)
|
|
else:
|
|
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
|
del net_g.enc_q
|
|
print(net_g.load_state_dict(cpt["weight"], strict=False)) # 不加这一行清不干净,真奇葩
|
|
net_g.eval().to(device)
|
|
if is_half:
|
|
net_g = net_g.half()
|
|
else:
|
|
net_g = net_g.float()
|
|
vc = VC(tgt_sr, config)
|
|
n_spk = cpt["config"][-3]
|
|
# return {"visible": True,"maximum": n_spk, "__type__": "update"}
|
|
|
|
|
|
get_vc(model_path)
|
|
audios = os.listdir(input_path)
|
|
for file in tq.tqdm(audios):
|
|
if file.endswith(".wav"):
|
|
file_path = input_path + "/" + file
|
|
wav_opt = vc_single(
|
|
0, file_path, f0up_key, None, f0method, index_path, index_rate
|
|
)
|
|
out_path = opt_path + "/" + file
|
|
wavfile.write(out_path, tgt_sr, wav_opt)
|