mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-01-01 20:45:04 +08:00
486 lines
18 KiB
Python
486 lines
18 KiB
Python
import os,traceback
|
|
import numpy as np
|
|
import torch
|
|
import torch.utils.data
|
|
|
|
from mel_processing import spectrogram_torch
|
|
from utils import load_wav_to_torch, load_filepaths_and_text
|
|
|
|
class TextAudioLoaderMultiNSFsid(torch.utils.data.Dataset):
|
|
"""
|
|
1) loads audio, text pairs
|
|
2) normalizes text and converts them to sequences of integers
|
|
3) computes spectrograms from audio files.
|
|
"""
|
|
|
|
def __init__(self, audiopaths_and_text, hparams):
|
|
self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text)
|
|
self.max_wav_value = hparams.max_wav_value
|
|
self.sampling_rate = hparams.sampling_rate
|
|
self.filter_length = hparams.filter_length
|
|
self.hop_length = hparams.hop_length
|
|
self.win_length = hparams.win_length
|
|
self.sampling_rate = hparams.sampling_rate
|
|
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
|
self.max_text_len = getattr(hparams, "max_text_len", 5000)
|
|
self._filter()
|
|
|
|
def _filter(self):
|
|
"""
|
|
Filter text & store spec lengths
|
|
"""
|
|
# Store spectrogram lengths for Bucketing
|
|
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
|
|
# spec_length = wav_length // hop_length
|
|
audiopaths_and_text_new = []
|
|
lengths = []
|
|
for audiopath, text, pitch,pitchf,dv in self.audiopaths_and_text:
|
|
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
|
audiopaths_and_text_new.append([audiopath, text, pitch,pitchf,dv])
|
|
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
|
|
self.audiopaths_and_text = audiopaths_and_text_new
|
|
self.lengths = lengths
|
|
def get_sid(self, sid):
|
|
sid = torch.LongTensor([int(sid)])
|
|
return sid
|
|
|
|
def get_audio_text_pair(self, audiopath_and_text):
|
|
# separate filename and text
|
|
file = audiopath_and_text[0]
|
|
phone = audiopath_and_text[1]
|
|
pitch = audiopath_and_text[2]
|
|
pitchf = audiopath_and_text[3]
|
|
dv = audiopath_and_text[4]
|
|
|
|
phone, pitch, pitchf = self.get_labels(phone, pitch, pitchf)
|
|
spec, wav = self.get_audio(file)
|
|
dv=self.get_sid(dv)
|
|
|
|
len_phone = phone.size()[0]
|
|
len_spec = spec.size()[-1]
|
|
# print(123,phone.shape,pitch.shape,spec.shape)
|
|
if len_phone != len_spec:
|
|
len_min = min(len_phone, len_spec)
|
|
# amor
|
|
len_wav = len_min * self.hop_length
|
|
|
|
spec = spec[:, :len_min]
|
|
wav = wav[:, :len_wav]
|
|
|
|
phone = phone[:len_min, :]
|
|
pitch = pitch[:len_min]
|
|
pitchf = pitchf[:len_min]
|
|
|
|
return (spec, wav, phone, pitch,pitchf,dv)
|
|
|
|
def get_labels(self, phone, pitch,pitchf):
|
|
phone = np.load(phone)
|
|
phone = np.repeat(phone, 2, axis=0)
|
|
pitch = np.load(pitch)
|
|
pitchf = np.load(pitchf)
|
|
n_num = min(phone.shape[0], 900) # DistributedBucketSampler
|
|
# print(234,phone.shape,pitch.shape)
|
|
phone = phone[:n_num, :]
|
|
pitch = pitch[:n_num]
|
|
pitchf = pitchf[:n_num]
|
|
phone = torch.FloatTensor(phone)
|
|
pitch = torch.LongTensor(pitch)
|
|
pitchf = torch.FloatTensor(pitchf)
|
|
return phone, pitch,pitchf
|
|
|
|
def get_audio(self, filename):
|
|
audio, sampling_rate = load_wav_to_torch(filename)
|
|
if sampling_rate != self.sampling_rate:
|
|
raise ValueError(
|
|
"{} SR doesn't match target {} SR".format(
|
|
sampling_rate, self.sampling_rate
|
|
)
|
|
)
|
|
audio_norm = audio / self.max_wav_value
|
|
audio_norm = audio_norm.unsqueeze(0)
|
|
spec_filename = filename.replace(".wav", ".spec.pt")
|
|
if os.path.exists(spec_filename):
|
|
try:
|
|
spec = torch.load(spec_filename)
|
|
except:
|
|
print (spec_filename,traceback.format_exc())
|
|
spec = spectrogram_torch(audio_norm, self.filter_length,
|
|
self.sampling_rate, self.hop_length, self.win_length,
|
|
center=False)
|
|
spec = torch.squeeze(spec, 0)
|
|
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)
|
|
else:
|
|
spec = spectrogram_torch(
|
|
audio_norm,
|
|
self.filter_length,
|
|
self.sampling_rate,
|
|
self.hop_length,
|
|
self.win_length,
|
|
center=False,
|
|
)
|
|
spec = torch.squeeze(spec, 0)
|
|
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)
|
|
return spec, audio_norm
|
|
|
|
def __getitem__(self, index):
|
|
return self.get_audio_text_pair(self.audiopaths_and_text[index])
|
|
|
|
def __len__(self):
|
|
return len(self.audiopaths_and_text)
|
|
class TextAudioCollateMultiNSFsid:
|
|
"""Zero-pads model inputs and targets"""
|
|
|
|
def __init__(self, return_ids=False):
|
|
self.return_ids = return_ids
|
|
|
|
def __call__(self, batch):
|
|
"""Collate's training batch from normalized text and aduio
|
|
PARAMS
|
|
------
|
|
batch: [text_normalized, spec_normalized, wav_normalized]
|
|
"""
|
|
# Right zero-pad all one-hot text sequences to max input length
|
|
_, ids_sorted_decreasing = torch.sort(
|
|
torch.LongTensor([x[0].size(1) for x in batch]), dim=0, descending=True
|
|
)
|
|
|
|
max_spec_len = max([x[0].size(1) for x in batch])
|
|
max_wave_len = max([x[1].size(1) for x in batch])
|
|
spec_lengths = torch.LongTensor(len(batch))
|
|
wave_lengths = torch.LongTensor(len(batch))
|
|
spec_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max_spec_len)
|
|
wave_padded = torch.FloatTensor(len(batch), 1, max_wave_len)
|
|
spec_padded.zero_()
|
|
wave_padded.zero_()
|
|
|
|
max_phone_len = max([x[2].size(0) for x in batch])
|
|
phone_lengths = torch.LongTensor(len(batch))
|
|
phone_padded = torch.FloatTensor(len(batch), max_phone_len, batch[0][2].shape[1])#(spec, wav, phone, pitch)
|
|
pitch_padded = torch.LongTensor(len(batch), max_phone_len)
|
|
pitchf_padded = torch.FloatTensor(len(batch), max_phone_len)
|
|
phone_padded.zero_()
|
|
pitch_padded.zero_()
|
|
pitchf_padded.zero_()
|
|
# dv = torch.FloatTensor(len(batch), 256)#gin=256
|
|
sid = torch.LongTensor(len(batch))
|
|
|
|
for i in range(len(ids_sorted_decreasing)):
|
|
row = batch[ids_sorted_decreasing[i]]
|
|
|
|
spec = row[0]
|
|
spec_padded[i, :, : spec.size(1)] = spec
|
|
spec_lengths[i] = spec.size(1)
|
|
|
|
wave = row[1]
|
|
wave_padded[i, :, : wave.size(1)] = wave
|
|
wave_lengths[i] = wave.size(1)
|
|
|
|
phone = row[2]
|
|
phone_padded[i, : phone.size(0), :] = phone
|
|
phone_lengths[i] = phone.size(0)
|
|
|
|
pitch = row[3]
|
|
pitch_padded[i, : pitch.size(0)] = pitch
|
|
pitchf = row[4]
|
|
pitchf_padded[i, : pitchf.size(0)] = pitchf
|
|
|
|
# dv[i] = row[5]
|
|
sid[i] = row[5]
|
|
|
|
|
|
return (
|
|
phone_padded,
|
|
phone_lengths,
|
|
pitch_padded,
|
|
pitchf_padded,
|
|
spec_padded,
|
|
spec_lengths,
|
|
wave_padded,
|
|
wave_lengths,
|
|
# dv
|
|
sid
|
|
)
|
|
|
|
class TextAudioLoader(torch.utils.data.Dataset):
|
|
"""
|
|
1) loads audio, text pairs
|
|
2) normalizes text and converts them to sequences of integers
|
|
3) computes spectrograms from audio files.
|
|
"""
|
|
|
|
def __init__(self, audiopaths_and_text, hparams):
|
|
self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text)
|
|
self.max_wav_value = hparams.max_wav_value
|
|
self.sampling_rate = hparams.sampling_rate
|
|
self.filter_length = hparams.filter_length
|
|
self.hop_length = hparams.hop_length
|
|
self.win_length = hparams.win_length
|
|
self.sampling_rate = hparams.sampling_rate
|
|
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
|
self.max_text_len = getattr(hparams, "max_text_len", 5000)
|
|
self._filter()
|
|
|
|
def _filter(self):
|
|
"""
|
|
Filter text & store spec lengths
|
|
"""
|
|
# Store spectrogram lengths for Bucketing
|
|
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
|
|
# spec_length = wav_length // hop_length
|
|
audiopaths_and_text_new = []
|
|
lengths = []
|
|
for audiopath, text,dv in self.audiopaths_and_text:
|
|
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
|
audiopaths_and_text_new.append([audiopath, text,dv])
|
|
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
|
|
self.audiopaths_and_text = audiopaths_and_text_new
|
|
self.lengths = lengths
|
|
def get_sid(self, sid):
|
|
sid = torch.LongTensor([int(sid)])
|
|
return sid
|
|
|
|
def get_audio_text_pair(self, audiopath_and_text):
|
|
# separate filename and text
|
|
file = audiopath_and_text[0]
|
|
phone = audiopath_and_text[1]
|
|
dv = audiopath_and_text[2]
|
|
|
|
phone = self.get_labels(phone)
|
|
spec, wav = self.get_audio(file)
|
|
dv=self.get_sid(dv)
|
|
|
|
len_phone = phone.size()[0]
|
|
len_spec = spec.size()[-1]
|
|
if len_phone != len_spec:
|
|
len_min = min(len_phone, len_spec)
|
|
len_wav = len_min * self.hop_length
|
|
spec = spec[:, :len_min]
|
|
wav = wav[:, :len_wav]
|
|
phone = phone[:len_min, :]
|
|
return (spec, wav, phone,dv)
|
|
|
|
def get_labels(self, phone):
|
|
phone = np.load(phone)
|
|
phone = np.repeat(phone, 2, axis=0)
|
|
n_num = min(phone.shape[0], 900) # DistributedBucketSampler
|
|
phone = phone[:n_num, :]
|
|
phone = torch.FloatTensor(phone)
|
|
return phone
|
|
|
|
def get_audio(self, filename):
|
|
audio, sampling_rate = load_wav_to_torch(filename)
|
|
if sampling_rate != self.sampling_rate:
|
|
raise ValueError(
|
|
"{} SR doesn't match target {} SR".format(
|
|
sampling_rate, self.sampling_rate
|
|
)
|
|
)
|
|
audio_norm = audio / self.max_wav_value
|
|
audio_norm = audio_norm.unsqueeze(0)
|
|
spec_filename = filename.replace(".wav", ".spec.pt")
|
|
if os.path.exists(spec_filename):
|
|
try:
|
|
spec = torch.load(spec_filename)
|
|
except:
|
|
print (spec_filename,traceback.format_exc())
|
|
spec = spectrogram_torch(audio_norm, self.filter_length,
|
|
self.sampling_rate, self.hop_length, self.win_length,
|
|
center=False)
|
|
spec = torch.squeeze(spec, 0)
|
|
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)
|
|
else:
|
|
spec = spectrogram_torch(
|
|
audio_norm,
|
|
self.filter_length,
|
|
self.sampling_rate,
|
|
self.hop_length,
|
|
self.win_length,
|
|
center=False,
|
|
)
|
|
spec = torch.squeeze(spec, 0)
|
|
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)
|
|
return spec, audio_norm
|
|
|
|
def __getitem__(self, index):
|
|
return self.get_audio_text_pair(self.audiopaths_and_text[index])
|
|
|
|
def __len__(self):
|
|
return len(self.audiopaths_and_text)
|
|
class TextAudioCollate:
|
|
"""Zero-pads model inputs and targets"""
|
|
|
|
def __init__(self, return_ids=False):
|
|
self.return_ids = return_ids
|
|
|
|
def __call__(self, batch):
|
|
"""Collate's training batch from normalized text and aduio
|
|
PARAMS
|
|
------
|
|
batch: [text_normalized, spec_normalized, wav_normalized]
|
|
"""
|
|
# Right zero-pad all one-hot text sequences to max input length
|
|
_, ids_sorted_decreasing = torch.sort(
|
|
torch.LongTensor([x[0].size(1) for x in batch]), dim=0, descending=True
|
|
)
|
|
|
|
max_spec_len = max([x[0].size(1) for x in batch])
|
|
max_wave_len = max([x[1].size(1) for x in batch])
|
|
spec_lengths = torch.LongTensor(len(batch))
|
|
wave_lengths = torch.LongTensor(len(batch))
|
|
spec_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max_spec_len)
|
|
wave_padded = torch.FloatTensor(len(batch), 1, max_wave_len)
|
|
spec_padded.zero_()
|
|
wave_padded.zero_()
|
|
|
|
max_phone_len = max([x[2].size(0) for x in batch])
|
|
phone_lengths = torch.LongTensor(len(batch))
|
|
phone_padded = torch.FloatTensor(len(batch), max_phone_len, batch[0][2].shape[1])
|
|
phone_padded.zero_()
|
|
sid = torch.LongTensor(len(batch))
|
|
|
|
for i in range(len(ids_sorted_decreasing)):
|
|
row = batch[ids_sorted_decreasing[i]]
|
|
|
|
spec = row[0]
|
|
spec_padded[i, :, : spec.size(1)] = spec
|
|
spec_lengths[i] = spec.size(1)
|
|
|
|
wave = row[1]
|
|
wave_padded[i, :, : wave.size(1)] = wave
|
|
wave_lengths[i] = wave.size(1)
|
|
|
|
phone = row[2]
|
|
phone_padded[i, : phone.size(0), :] = phone
|
|
phone_lengths[i] = phone.size(0)
|
|
|
|
sid[i] = row[3]
|
|
|
|
|
|
return (
|
|
phone_padded,
|
|
phone_lengths,
|
|
spec_padded,
|
|
spec_lengths,
|
|
wave_padded,
|
|
wave_lengths,
|
|
sid
|
|
)
|
|
|
|
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
|
"""
|
|
Maintain similar input lengths in a batch.
|
|
Length groups are specified by boundaries.
|
|
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
|
|
|
|
It removes samples which are not included in the boundaries.
|
|
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dataset,
|
|
batch_size,
|
|
boundaries,
|
|
num_replicas=None,
|
|
rank=None,
|
|
shuffle=True,
|
|
):
|
|
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
|
|
self.lengths = dataset.lengths
|
|
self.batch_size = batch_size
|
|
self.boundaries = boundaries
|
|
|
|
self.buckets, self.num_samples_per_bucket = self._create_buckets()
|
|
self.total_size = sum(self.num_samples_per_bucket)
|
|
self.num_samples = self.total_size // self.num_replicas
|
|
|
|
def _create_buckets(self):
|
|
buckets = [[] for _ in range(len(self.boundaries) - 1)]
|
|
for i in range(len(self.lengths)):
|
|
length = self.lengths[i]
|
|
idx_bucket = self._bisect(length)
|
|
if idx_bucket != -1:
|
|
buckets[idx_bucket].append(i)
|
|
|
|
for i in range(len(buckets) - 1, -1, -1):#
|
|
if len(buckets[i]) == 0:
|
|
buckets.pop(i)
|
|
self.boundaries.pop(i + 1)
|
|
|
|
num_samples_per_bucket = []
|
|
for i in range(len(buckets)):
|
|
len_bucket = len(buckets[i])
|
|
total_batch_size = self.num_replicas * self.batch_size
|
|
rem = (
|
|
total_batch_size - (len_bucket % total_batch_size)
|
|
) % total_batch_size
|
|
num_samples_per_bucket.append(len_bucket + rem)
|
|
return buckets, num_samples_per_bucket
|
|
|
|
def __iter__(self):
|
|
# deterministically shuffle based on epoch
|
|
g = torch.Generator()
|
|
g.manual_seed(self.epoch)
|
|
|
|
indices = []
|
|
if self.shuffle:
|
|
for bucket in self.buckets:
|
|
indices.append(torch.randperm(len(bucket), generator=g).tolist())
|
|
else:
|
|
for bucket in self.buckets:
|
|
indices.append(list(range(len(bucket))))
|
|
|
|
batches = []
|
|
for i in range(len(self.buckets)):
|
|
bucket = self.buckets[i]
|
|
len_bucket = len(bucket)
|
|
ids_bucket = indices[i]
|
|
num_samples_bucket = self.num_samples_per_bucket[i]
|
|
|
|
# add extra samples to make it evenly divisible
|
|
rem = num_samples_bucket - len_bucket
|
|
ids_bucket = (
|
|
ids_bucket
|
|
+ ids_bucket * (rem // len_bucket)
|
|
+ ids_bucket[: (rem % len_bucket)]
|
|
)
|
|
|
|
# subsample
|
|
ids_bucket = ids_bucket[self.rank :: self.num_replicas]
|
|
|
|
# batching
|
|
for j in range(len(ids_bucket) // self.batch_size):
|
|
batch = [
|
|
bucket[idx]
|
|
for idx in ids_bucket[
|
|
j * self.batch_size : (j + 1) * self.batch_size
|
|
]
|
|
]
|
|
batches.append(batch)
|
|
|
|
if self.shuffle:
|
|
batch_ids = torch.randperm(len(batches), generator=g).tolist()
|
|
batches = [batches[i] for i in batch_ids]
|
|
self.batches = batches
|
|
|
|
assert len(self.batches) * self.batch_size == self.num_samples
|
|
return iter(self.batches)
|
|
|
|
def _bisect(self, x, lo=0, hi=None):
|
|
if hi is None:
|
|
hi = len(self.boundaries) - 1
|
|
|
|
if hi > lo:
|
|
mid = (hi + lo) // 2
|
|
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
|
|
return mid
|
|
elif x <= self.boundaries[mid]:
|
|
return self._bisect(x, lo, mid)
|
|
else:
|
|
return self._bisect(x, mid + 1, hi)
|
|
else:
|
|
return -1
|
|
|
|
def __len__(self):
|
|
return self.num_samples // self.batch_size
|