2025-03-21 18:13:28 +02:00

104 lines
4.0 KiB
Python

import os
import shutil
# Import modules from your packages
from rvc_ui.initialization import vc
from spark_ui.main import initialize_model, run_tts
from spark.sparktts.utils.token_parser import LEVELS_MAP_UI
# Initialize the Spark TTS model (moved outside function to avoid reinitializing)
model_dir = "spark/pretrained_models/Spark-TTS-0.5B"
device = 0
spark_model = initialize_model(model_dir, device=device)
def generate_and_process_with_rvc(
text, prompt_text, prompt_wav_upload, prompt_wav_record,
spk_item, vc_transform, f0method,
file_index1, file_index2, index_rate, filter_radius,
resample_sr, rms_mix_rate, protect
):
"""
Handle combined TTS and RVC processing and save outputs to TEMP directories
"""
# Ensure TEMP directories exist
os.makedirs("./TEMP/spark", exist_ok=True)
os.makedirs("./TEMP/rvc", exist_ok=True)
# Get next fragment number
fragment_num = 1
while (os.path.exists(f"./TEMP/spark/fragment_{fragment_num}.wav") or
os.path.exists(f"./TEMP/rvc/fragment_{fragment_num}.wav")):
fragment_num += 1
# First generate TTS audio
prompt_speech = prompt_wav_upload if prompt_wav_upload else prompt_wav_record
prompt_text_clean = None if not prompt_text or len(prompt_text) < 2 else prompt_text
tts_path = run_tts(
text,
spark_model,
prompt_text=prompt_text_clean,
prompt_speech=prompt_speech
)
# Make sure we have a TTS file to process
if not tts_path or not os.path.exists(tts_path):
return "Failed to generate TTS audio", None
# Save Spark output to TEMP/spark
spark_output_path = f"./TEMP/spark/fragment_{fragment_num}.wav"
shutil.copy2(tts_path, spark_output_path)
# Call RVC processing function
f0_file = None # We're not using an F0 curve file in this pipeline
output_info, output_audio = vc.vc_single(
spk_item, tts_path, vc_transform, f0_file, f0method,
file_index1, file_index2, index_rate, filter_radius,
resample_sr, rms_mix_rate, protect
)
# Save RVC output to TEMP/rvc directory
rvc_output_path = f"./TEMP/rvc/fragment_{fragment_num}.wav"
rvc_saved = False
# Try different ways to save the RVC output based on common formats
try:
if isinstance(output_audio, str) and os.path.exists(output_audio):
# Case 1: output_audio is a file path string
shutil.copy2(output_audio, rvc_output_path)
rvc_saved = True
elif isinstance(output_audio, tuple) and len(output_audio) >= 2:
# Case 2: output_audio might be (sample_rate, audio_data)
try:
import soundfile as sf
sf.write(rvc_output_path, output_audio[1], output_audio[0])
rvc_saved = True
except Exception as inner_e:
output_info += f"\nFailed to save RVC tuple format: {str(inner_e)}"
elif hasattr(output_audio, 'name') and os.path.exists(output_audio.name):
# Case 3: output_audio might be a file-like object
shutil.copy2(output_audio.name, rvc_output_path)
rvc_saved = True
except Exception as e:
output_info += f"\nError saving RVC output: {str(e)}"
# Add file paths to output info
output_info += f"\nSpark output saved to: {spark_output_path}"
if rvc_saved:
output_info += f"\nRVC output saved to: {rvc_output_path}"
else:
output_info += f"\nCould not automatically save RVC output to {rvc_output_path}"
return output_info, output_audio
def modified_get_vc(sid0_value, protect0_value, file_index2_component):
"""
Modified function to get voice conversion parameters
"""
protect1_value = protect0_value
outputs = vc.get_vc(sid0_value, protect0_value, protect1_value)
if isinstance(outputs, tuple) and len(outputs) >= 3:
return outputs[0], outputs[1], outputs[3]
return 0, protect0_value, file_index2_component.choices[0] if file_index2_component.choices else ""