mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-01-19 21:00:11 +08:00
105 lines
3.6 KiB
Python
105 lines
3.6 KiB
Python
import sys,os,pdb,multiprocessing
|
|
now_dir=os.getcwd()
|
|
sys.path.append(now_dir)
|
|
|
|
inp_root = sys.argv[1]
|
|
sr = int(sys.argv[2])
|
|
n_p = int(sys.argv[3])
|
|
exp_dir = sys.argv[4]
|
|
import numpy as np,ffmpeg,os,traceback
|
|
from slicer2 import Slicer
|
|
from joblib import Parallel, delayed
|
|
import librosa,traceback
|
|
from scipy.io import wavfile
|
|
import multiprocessing
|
|
from my_utils import load_audio
|
|
from time import sleep
|
|
|
|
f = open("%s/preprocess.log"%exp_dir, "a+")
|
|
def printt(strr):
|
|
print(strr)
|
|
f.write("%s\n" % strr)
|
|
f.flush()
|
|
|
|
class PreProcess():
|
|
def __init__(self,sr,exp_dir):
|
|
self.slicer = Slicer(
|
|
sr=sr,
|
|
threshold=-32,
|
|
min_length=800,
|
|
min_interval=400,
|
|
hop_size=15,
|
|
max_sil_kept=150
|
|
)
|
|
self.sr=sr
|
|
self.per=3.7
|
|
self.overlap=0.3
|
|
self.tail=self.per+self.overlap
|
|
self.max=0.95
|
|
self.alpha=0.8
|
|
self.exp_dir=exp_dir
|
|
self.gt_wavs_dir="%s/0_gt_wavs"%exp_dir
|
|
self.wavs16k_dir="%s/1_16k_wavs"%exp_dir
|
|
os.makedirs(self.exp_dir,exist_ok=True)
|
|
os.makedirs(self.gt_wavs_dir,exist_ok=True)
|
|
os.makedirs(self.wavs16k_dir,exist_ok=True)
|
|
|
|
def norm_write(self,tmp_audio,idx0,idx1):
|
|
tmp_audio = (tmp_audio / np.abs(tmp_audio).max() * (self.max * self.alpha)) + (1 - self.alpha) * tmp_audio
|
|
wavfile.write("%s/%s_%s.wav" % (self.gt_wavs_dir, idx0, idx1), self.sr, (tmp_audio*32768).astype(np.int16))
|
|
tmp_audio = librosa.resample(tmp_audio, orig_sr=self.sr, target_sr=16000)
|
|
wavfile.write("%s/%s_%s.wav" % (self.wavs16k_dir, idx0, idx1), 16000, (tmp_audio*32768).astype(np.int16))
|
|
|
|
def pipeline(self,path, idx0):
|
|
try:
|
|
audio = load_audio(path,self.sr)
|
|
idx1=0
|
|
for audio in self.slicer.slice(audio):
|
|
i = 0
|
|
while (1):
|
|
start = int(self.sr * (self.per - self.overlap) * i)
|
|
i += 1
|
|
if (len(audio[start:]) > self.tail * self.sr):
|
|
tmp_audio = audio[start:start + int(self.per * self.sr)]
|
|
self.norm_write(tmp_audio,idx0,idx1)
|
|
idx1 += 1
|
|
else:
|
|
tmp_audio = audio[start:]
|
|
break
|
|
self.norm_write(tmp_audio, idx0, idx1)
|
|
printt("%s->Suc."%path)
|
|
except:
|
|
printt("%s->%s"%(path,traceback.format_exc()))
|
|
|
|
def pipeline_mp(self,infos):
|
|
for path, idx0 in infos:
|
|
self.pipeline(path,idx0)
|
|
|
|
def pipeline_mp_inp_dir(self,inp_root,n_p):
|
|
try:
|
|
infos = [("%s/%s" % (inp_root, name), idx) for idx, name in enumerate(sorted(list(os.listdir(inp_root))))]
|
|
ps=[]
|
|
for i in range(n_p):
|
|
p=multiprocessing.Process(target=self.pipeline_mp,args=(infos[i::n_p],))
|
|
p.start()
|
|
ps.append(p)
|
|
for p in ps:p.join()
|
|
except:
|
|
printt("Fail. %s"%traceback.format_exc())
|
|
|
|
if __name__=='__main__':
|
|
# f = open("logs/log_preprocess.log", "w")
|
|
printt(sys.argv)
|
|
######################################################
|
|
# inp_root=r"E:\语音音频+标注\米津玄师\src"
|
|
# inp_root=r"E:\codes\py39\vits_vc_gpu_train\todo-songs"
|
|
# sr=40000
|
|
# n_p = 6
|
|
# exp_dir=r"E:\codes\py39\dataset\mi-test"
|
|
|
|
######################################################
|
|
printt("start preprocess")
|
|
pp=PreProcess(sr,exp_dir)
|
|
pp.pipeline_mp_inp_dir(inp_root,n_p)
|
|
printt("end preprocess")
|