2022-09-17 17:05:04 +08:00
|
|
|
import glob
|
|
|
|
import os.path
|
|
|
|
import sys
|
|
|
|
from collections import namedtuple
|
|
|
|
import torch
|
|
|
|
from omegaconf import OmegaConf
|
|
|
|
|
|
|
|
|
|
|
|
from ldm.util import instantiate_from_config
|
|
|
|
|
|
|
|
from modules import shared
|
|
|
|
|
2022-09-28 09:08:07 +08:00
|
|
|
CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name'])
|
2022-09-17 17:05:04 +08:00
|
|
|
checkpoints_list = {}
|
|
|
|
|
|
|
|
try:
|
|
|
|
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
|
|
|
|
|
|
|
|
from transformers import logging
|
|
|
|
|
|
|
|
logging.set_verbosity_error()
|
|
|
|
except Exception:
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
def list_models():
|
|
|
|
checkpoints_list.clear()
|
|
|
|
|
|
|
|
model_dir = os.path.abspath(shared.cmd_opts.ckpt_dir)
|
|
|
|
|
|
|
|
def modeltitle(path, h):
|
|
|
|
abspath = os.path.abspath(path)
|
|
|
|
|
|
|
|
if abspath.startswith(model_dir):
|
|
|
|
name = abspath.replace(model_dir, '')
|
|
|
|
else:
|
|
|
|
name = os.path.basename(path)
|
|
|
|
|
|
|
|
if name.startswith("\\") or name.startswith("/"):
|
|
|
|
name = name[1:]
|
|
|
|
|
|
|
|
return f'{name} [{h}]'
|
|
|
|
|
|
|
|
cmd_ckpt = shared.cmd_opts.ckpt
|
|
|
|
if os.path.exists(cmd_ckpt):
|
|
|
|
h = model_hash(cmd_ckpt)
|
|
|
|
title = modeltitle(cmd_ckpt, h)
|
2022-09-28 09:08:07 +08:00
|
|
|
model_name = title.rsplit(".",1)[0] # remove extension if present
|
|
|
|
checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h, model_name)
|
2022-09-17 17:05:04 +08:00
|
|
|
elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file:
|
|
|
|
print(f"Checkpoint in --ckpt argument not found: {cmd_ckpt}", file=sys.stderr)
|
|
|
|
|
|
|
|
if os.path.exists(model_dir):
|
|
|
|
for filename in glob.glob(model_dir + '/**/*.ckpt', recursive=True):
|
|
|
|
h = model_hash(filename)
|
|
|
|
title = modeltitle(filename, h)
|
2022-09-28 09:08:07 +08:00
|
|
|
model_name = title.rsplit(".",1)[0] # remove extension if present
|
|
|
|
checkpoints_list[title] = CheckpointInfo(filename, title, h, model_name)
|
2022-09-17 17:05:04 +08:00
|
|
|
|
|
|
|
|
|
|
|
def model_hash(filename):
|
|
|
|
try:
|
|
|
|
with open(filename, "rb") as file:
|
|
|
|
import hashlib
|
|
|
|
m = hashlib.sha256()
|
|
|
|
|
|
|
|
file.seek(0x100000)
|
|
|
|
m.update(file.read(0x10000))
|
|
|
|
return m.hexdigest()[0:8]
|
|
|
|
except FileNotFoundError:
|
|
|
|
return 'NOFILE'
|
|
|
|
|
|
|
|
|
|
|
|
def select_checkpoint():
|
|
|
|
model_checkpoint = shared.opts.sd_model_checkpoint
|
|
|
|
checkpoint_info = checkpoints_list.get(model_checkpoint, None)
|
|
|
|
if checkpoint_info is not None:
|
|
|
|
return checkpoint_info
|
|
|
|
|
|
|
|
if len(checkpoints_list) == 0:
|
2022-09-19 04:52:01 +08:00
|
|
|
print(f"No checkpoints found. When searching for checkpoints, looked at:", file=sys.stderr)
|
|
|
|
print(f" - file {os.path.abspath(shared.cmd_opts.ckpt)}", file=sys.stderr)
|
|
|
|
print(f" - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}", file=sys.stderr)
|
|
|
|
print(f"Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr)
|
|
|
|
exit(1)
|
2022-09-17 17:05:04 +08:00
|
|
|
|
|
|
|
checkpoint_info = next(iter(checkpoints_list.values()))
|
|
|
|
if model_checkpoint is not None:
|
|
|
|
print(f"Checkpoint {model_checkpoint} not found; loading fallback {checkpoint_info.title}", file=sys.stderr)
|
|
|
|
|
|
|
|
return checkpoint_info
|
|
|
|
|
|
|
|
|
|
|
|
def load_model_weights(model, checkpoint_file, sd_model_hash):
|
|
|
|
print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}")
|
|
|
|
|
|
|
|
pl_sd = torch.load(checkpoint_file, map_location="cpu")
|
|
|
|
if "global_step" in pl_sd:
|
|
|
|
print(f"Global Step: {pl_sd['global_step']}")
|
|
|
|
sd = pl_sd["state_dict"]
|
|
|
|
|
|
|
|
model.load_state_dict(sd, strict=False)
|
|
|
|
|
|
|
|
if shared.cmd_opts.opt_channelslast:
|
|
|
|
model.to(memory_format=torch.channels_last)
|
|
|
|
|
|
|
|
if not shared.cmd_opts.no_half:
|
|
|
|
model.half()
|
|
|
|
|
|
|
|
model.sd_model_hash = sd_model_hash
|
|
|
|
model.sd_model_checkpint = checkpoint_file
|
|
|
|
|
|
|
|
|
|
|
|
def load_model():
|
|
|
|
from modules import lowvram, sd_hijack
|
|
|
|
checkpoint_info = select_checkpoint()
|
|
|
|
|
|
|
|
sd_config = OmegaConf.load(shared.cmd_opts.config)
|
|
|
|
sd_model = instantiate_from_config(sd_config.model)
|
|
|
|
load_model_weights(sd_model, checkpoint_info.filename, checkpoint_info.hash)
|
|
|
|
|
|
|
|
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
|
|
|
lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram)
|
|
|
|
else:
|
|
|
|
sd_model.to(shared.device)
|
|
|
|
|
|
|
|
sd_hijack.model_hijack.hijack(sd_model)
|
|
|
|
|
|
|
|
sd_model.eval()
|
|
|
|
|
|
|
|
print(f"Model loaded.")
|
|
|
|
return sd_model
|
|
|
|
|
|
|
|
|
2022-09-17 18:49:36 +08:00
|
|
|
def reload_model_weights(sd_model, info=None):
|
2022-09-17 17:05:04 +08:00
|
|
|
from modules import lowvram, devices
|
2022-09-17 18:49:36 +08:00
|
|
|
checkpoint_info = info or select_checkpoint()
|
2022-09-17 17:05:04 +08:00
|
|
|
|
|
|
|
if sd_model.sd_model_checkpint == checkpoint_info.filename:
|
|
|
|
return
|
|
|
|
|
|
|
|
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
|
|
|
lowvram.send_everything_to_cpu()
|
|
|
|
else:
|
|
|
|
sd_model.to(devices.cpu)
|
|
|
|
|
|
|
|
load_model_weights(sd_model, checkpoint_info.filename, checkpoint_info.hash)
|
|
|
|
|
|
|
|
if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
|
|
|
|
sd_model.to(devices.device)
|
|
|
|
|
|
|
|
print(f"Weights loaded.")
|
|
|
|
return sd_model
|