stable-diffusion-webui/modules/sd_schedulers.py

92 lines
3.0 KiB
Python
Raw Normal View History

2024-03-20 14:17:11 +08:00
import dataclasses
import torch
import k_diffusion
2024-06-09 06:56:23 +08:00
import numpy as np
from modules import shared
def to_d(x, sigma, denoised):
"""Converts a denoiser output to a Karras ODE derivative."""
return (x - denoised) / sigma
k_diffusion.sampling.to_d = to_d
2024-03-20 14:17:11 +08:00
@dataclasses.dataclass
class Scheduler:
name: str
label: str
function: any
default_rho: float = -1
need_inner_model: bool = False
aliases: list = None
def uniform(n, sigma_min, sigma_max, inner_model, device):
return inner_model.get_sigmas(n).to(device)
2024-03-20 15:27:32 +08:00
def sgm_uniform(n, sigma_min, sigma_max, inner_model, device):
2024-03-20 14:17:11 +08:00
start = inner_model.sigma_to_t(torch.tensor(sigma_max))
end = inner_model.sigma_to_t(torch.tensor(sigma_min))
sigs = [
inner_model.t_to_sigma(ts)
for ts in torch.linspace(start, end, n + 1)[:-1]
2024-03-20 14:17:11 +08:00
]
sigs += [0.0]
return torch.FloatTensor(sigs).to(device)
2024-03-20 14:17:11 +08:00
def get_align_your_steps_sigmas(n, sigma_min, sigma_max, device):
# https://research.nvidia.com/labs/toronto-ai/AlignYourSteps/howto.html
def loglinear_interp(t_steps, num_steps):
"""
Performs log-linear interpolation of a given array of decreasing numbers.
"""
xs = np.linspace(0, 1, len(t_steps))
ys = np.log(t_steps[::-1])
new_xs = np.linspace(0, 1, num_steps)
new_ys = np.interp(new_xs, xs, ys)
interped_ys = np.exp(new_ys)[::-1].copy()
return interped_ys
if shared.sd_model.is_sdxl:
sigmas = [14.615, 6.315, 3.771, 2.181, 1.342, 0.862, 0.555, 0.380, 0.234, 0.113, 0.029]
else:
# Default to SD 1.5 sigmas.
sigmas = [14.615, 6.475, 3.861, 2.697, 1.886, 1.396, 0.963, 0.652, 0.399, 0.152, 0.029]
if n != len(sigmas):
sigmas = np.append(loglinear_interp(sigmas, n), [0.0])
else:
sigmas.append(0.0)
return torch.FloatTensor(sigmas).to(device)
2024-03-20 14:17:11 +08:00
def kl_optimal(n, sigma_min, sigma_max, device):
alpha_min = torch.arctan(torch.tensor(sigma_min, device=device))
alpha_max = torch.arctan(torch.tensor(sigma_max, device=device))
step_indices = torch.arange(n + 1, device=device)
sigmas = torch.tan(step_indices / n * alpha_min + (1.0 - step_indices / n) * alpha_max)
2024-04-23 12:09:43 +08:00
return sigmas
2024-03-20 14:17:11 +08:00
schedulers = [
Scheduler('automatic', 'Automatic', None),
2024-03-20 15:27:32 +08:00
Scheduler('uniform', 'Uniform', uniform, need_inner_model=True),
2024-03-20 14:17:11 +08:00
Scheduler('karras', 'Karras', k_diffusion.sampling.get_sigmas_karras, default_rho=7.0),
Scheduler('exponential', 'Exponential', k_diffusion.sampling.get_sigmas_exponential),
Scheduler('polyexponential', 'Polyexponential', k_diffusion.sampling.get_sigmas_polyexponential, default_rho=1.0),
Scheduler('sgm_uniform', 'SGM Uniform', sgm_uniform, need_inner_model=True, aliases=["SGMUniform"]),
2024-04-23 12:09:43 +08:00
Scheduler('kl_optimal', 'KL Optimal', kl_optimal),
Scheduler('align_your_steps', 'Align Your Steps', get_align_your_steps_sigmas),
2024-03-20 14:17:11 +08:00
]
schedulers_map = {**{x.name: x for x in schedulers}, **{x.label: x for x in schedulers}}