stable-diffusion-webui/modules/devices.py

98 lines
3.2 KiB
Python
Raw Normal View History

2022-10-22 06:11:07 +08:00
import sys, os, shlex
import contextlib
2022-09-11 13:11:27 +08:00
import torch
from modules import errors
# has_mps is only available in nightly pytorch (for now), `getattr` for compatibility
2022-09-11 13:11:27 +08:00
has_mps = getattr(torch, 'has_mps', False)
2022-09-11 23:48:36 +08:00
cpu = torch.device("cpu")
2022-10-22 06:11:07 +08:00
def extract_device_id(args, name):
for x in range(len(args)):
if name in args[x]: return args[x+1]
return None
2022-09-11 23:48:36 +08:00
2022-09-11 13:11:27 +08:00
def get_optimal_device():
2022-09-11 23:48:36 +08:00
if torch.cuda.is_available():
from modules import shared
device_id = shared.cmd_opts.device_id
2022-10-22 06:11:07 +08:00
if device_id is not None:
cuda_device = f"cuda:{device_id}"
return torch.device(cuda_device)
else:
return torch.device("cuda")
2022-09-11 23:48:36 +08:00
if has_mps:
return torch.device("mps")
return cpu
def torch_gc():
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
def enable_tf32():
if torch.cuda.is_available():
2022-11-08 10:06:48 +08:00
#TODO: make this better; find a way to check if it is a turing card
turing = ["1630","1650","1660","Quadro RTX 3000","Quadro RTX 4000","Quadro RTX 4000","Quadro RTX 5000","Quadro RTX 5000","Quadro RTX 6000","Quadro RTX 6000","Quadro RTX 8000","Quadro RTX T400","Quadro RTX T400","Quadro RTX T600","Quadro RTX T1000","Quadro RTX T1000","2060","2070","2080","Titan RTX","Tesla T4","MX450","MX550"]
for devid in range(0,torch.cuda.device_count()):
for i in turing:
if i in torch.cuda.get_device_name(devid):
shd = True
if shd:
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.enabled = True
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
2022-11-07 09:05:51 +08:00
errors.run(enable_tf32, "Enabling TF32")
2022-09-13 01:09:32 +08:00
device = device_interrogate = device_gfpgan = device_swinir = device_esrgan = device_scunet = device_codeformer = None
dtype = torch.float16
2022-10-10 21:11:14 +08:00
dtype_vae = torch.float16
2022-09-13 01:09:32 +08:00
def randn(seed, shape):
# Pytorch currently doesn't handle setting randomness correctly when the metal backend is used.
if device.type == 'mps':
generator = torch.Generator(device=cpu)
generator.manual_seed(seed)
noise = torch.randn(shape, generator=generator, device=cpu).to(device)
return noise
torch.manual_seed(seed)
return torch.randn(shape, device=device)
def randn_without_seed(shape):
# Pytorch currently doesn't handle setting randomness correctly when the metal backend is used.
if device.type == 'mps':
generator = torch.Generator(device=cpu)
noise = torch.randn(shape, generator=generator, device=cpu).to(device)
return noise
return torch.randn(shape, device=device)
2022-10-10 21:11:14 +08:00
def autocast(disable=False):
from modules import shared
2022-10-10 21:11:14 +08:00
if disable:
return contextlib.nullcontext()
if dtype == torch.float32 or shared.cmd_opts.precision == "full":
return contextlib.nullcontext()
return torch.autocast("cuda")
# MPS workaround for https://github.com/pytorch/pytorch/issues/79383
def mps_contiguous(input_tensor, device): return input_tensor.contiguous() if device.type == 'mps' else input_tensor
def mps_contiguous_to(input_tensor, device): return mps_contiguous(input_tensor, device).to(device)