stable-diffusion-webui/modules/upscaler_utils.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

191 lines
6.0 KiB
Python
Raw Normal View History

import logging
from typing import Callable
import numpy as np
import torch
import tqdm
from PIL import Image
from modules import devices, images, shared, torch_utils
logger = logging.getLogger(__name__)
def pil_image_to_torch_bgr(img: Image.Image) -> torch.Tensor:
img = np.array(img.convert("RGB"))
img = img[:, :, ::-1] # flip RGB to BGR
img = np.transpose(img, (2, 0, 1)) # HWC to CHW
img = np.ascontiguousarray(img) / 255 # Rescale to [0, 1]
return torch.from_numpy(img)
def torch_bgr_to_pil_image(tensor: torch.Tensor) -> Image.Image:
if tensor.ndim == 4:
# If we're given a tensor with a batch dimension, squeeze it out
# (but only if it's a batch of size 1).
if tensor.shape[0] != 1:
raise ValueError(f"{tensor.shape} does not describe a BCHW tensor")
tensor = tensor.squeeze(0)
assert tensor.ndim == 3, f"{tensor.shape} does not describe a CHW tensor"
# TODO: is `tensor.float().cpu()...numpy()` the most efficient idiom?
arr = tensor.float().cpu().clamp_(0, 1).numpy() # clamp
arr = 255.0 * np.moveaxis(arr, 0, 2) # CHW to HWC, rescale
arr = arr.round().astype(np.uint8)
arr = arr[:, :, ::-1] # flip BGR to RGB
return Image.fromarray(arr, "RGB")
def upscale_pil_patch(model, img: Image.Image) -> Image.Image:
"""
Upscale a given PIL image using the given model.
"""
2024-01-01 03:38:30 +08:00
param = torch_utils.get_param(model)
with torch.no_grad():
tensor = pil_image_to_torch_bgr(img).unsqueeze(0) # add batch dimension
tensor = tensor.to(device=param.device, dtype=param.dtype)
with devices.without_autocast():
return torch_bgr_to_pil_image(model(tensor))
def upscale_with_model(
model: Callable[[torch.Tensor], torch.Tensor],
img: Image.Image,
*,
tile_size: int,
tile_overlap: int = 0,
desc="tiled upscale",
) -> Image.Image:
if tile_size <= 0:
logger.debug("Upscaling %s without tiling", img)
output = upscale_pil_patch(model, img)
logger.debug("=> %s", output)
return output
grid = images.split_grid(img, tile_size, tile_size, tile_overlap)
newtiles = []
with tqdm.tqdm(total=grid.tile_count, desc=desc, disable=not shared.opts.enable_upscale_progressbar) as p:
for y, h, row in grid.tiles:
newrow = []
for x, w, tile in row:
2024-03-26 18:53:38 +08:00
if shared.state.interrupted:
return img
output = upscale_pil_patch(model, tile)
scale_factor = output.width // tile.width
newrow.append([x * scale_factor, w * scale_factor, output])
p.update(1)
newtiles.append([y * scale_factor, h * scale_factor, newrow])
newgrid = images.Grid(
newtiles,
tile_w=grid.tile_w * scale_factor,
tile_h=grid.tile_h * scale_factor,
image_w=grid.image_w * scale_factor,
image_h=grid.image_h * scale_factor,
overlap=grid.overlap * scale_factor,
)
return images.combine_grid(newgrid)
def tiled_upscale_2(
img: torch.Tensor,
model,
*,
tile_size: int,
tile_overlap: int,
scale: int,
2024-01-04 04:39:12 +08:00
device: torch.device,
desc="Tiled upscale",
):
# Alternative implementation of `upscale_with_model` originally used by
# SwinIR and ScuNET. It differs from `upscale_with_model` in that tiling and
# weighting is done in PyTorch space, as opposed to `images.Grid` doing it in
# Pillow space without weighting.
b, c, h, w = img.size()
tile_size = min(tile_size, h, w)
if tile_size <= 0:
logger.debug("Upscaling %s without tiling", img.shape)
return model(img)
stride = tile_size - tile_overlap
h_idx_list = list(range(0, h - tile_size, stride)) + [h - tile_size]
w_idx_list = list(range(0, w - tile_size, stride)) + [w - tile_size]
result = torch.zeros(
b,
c,
h * scale,
w * scale,
device=device,
dtype=img.dtype,
)
weights = torch.zeros_like(result)
logger.debug("Upscaling %s to %s with tiles", img.shape, result.shape)
with tqdm.tqdm(total=len(h_idx_list) * len(w_idx_list), desc=desc, disable=not shared.opts.enable_upscale_progressbar) as pbar:
for h_idx in h_idx_list:
if shared.state.interrupted or shared.state.skipped:
break
for w_idx in w_idx_list:
if shared.state.interrupted or shared.state.skipped:
break
# Only move this patch to the device if it's not already there.
in_patch = img[
...,
h_idx : h_idx + tile_size,
w_idx : w_idx + tile_size,
].to(device=device)
out_patch = model(in_patch)
result[
...,
h_idx * scale : (h_idx + tile_size) * scale,
w_idx * scale : (w_idx + tile_size) * scale,
].add_(out_patch)
out_patch_mask = torch.ones_like(out_patch)
weights[
...,
h_idx * scale : (h_idx + tile_size) * scale,
w_idx * scale : (w_idx + tile_size) * scale,
].add_(out_patch_mask)
pbar.update(1)
output = result.div_(weights)
return output
def upscale_2(
img: Image.Image,
model,
*,
tile_size: int,
tile_overlap: int,
scale: int,
desc: str,
):
"""
Convenience wrapper around `tiled_upscale_2` that handles PIL images.
"""
2024-01-04 04:39:12 +08:00
param = torch_utils.get_param(model)
tensor = pil_image_to_torch_bgr(img).to(dtype=param.dtype).unsqueeze(0) # add batch dimension
with torch.no_grad():
output = tiled_upscale_2(
tensor,
model,
tile_size=tile_size,
tile_overlap=tile_overlap,
scale=scale,
desc=desc,
2024-01-04 04:39:12 +08:00
device=param.device,
)
return torch_bgr_to_pil_image(output)