stable-diffusion-webui/modules/img2img.py

254 lines
12 KiB
Python
Raw Normal View History

import os
from contextlib import closing
from pathlib import Path
import numpy as np
2023-08-04 17:35:47 +08:00
from PIL import Image, ImageOps, ImageFilter, ImageEnhance, UnidentifiedImageError
2023-06-15 03:03:44 +08:00
import gradio as gr
from modules import images
from modules.infotext_utils import create_override_settings_dict, parse_generation_parameters
from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images
from modules.shared import opts, state
2023-08-25 09:12:19 +08:00
from modules.sd_models import get_closet_checkpoint_match
import modules.shared as shared
import modules.processing as processing
from modules.ui import plaintext_to_html
2022-09-03 22:21:15 +08:00
import modules.scripts
2024-05-17 03:08:24 +08:00
def process_batch(p, input, output_dir, inpaint_mask_dir, args, to_scale=False, scale_by=1.0, use_png_info=False, png_info_props=None, png_info_dir=None):
2023-07-30 13:47:24 +08:00
output_dir = output_dir.strip()
processing.fix_seed(p)
2024-05-17 03:08:24 +08:00
if isinstance(input, str):
batch_images = list(shared.walk_files(input, allowed_extensions=(".png", ".jpg", ".jpeg", ".webp", ".tif", ".tiff")))
else:
batch_images = [os.path.abspath(x.name) for x in input]
2023-01-28 21:42:24 +08:00
is_inpaint_batch = False
if inpaint_mask_dir:
inpaint_masks = shared.listfiles(inpaint_mask_dir)
is_inpaint_batch = bool(inpaint_masks)
2023-06-05 16:08:57 +08:00
if is_inpaint_batch:
print(f"\nInpaint batch is enabled. {len(inpaint_masks)} masks found.")
print(f"Will process {len(batch_images)} images, creating {p.n_iter * p.batch_size} new images for each.")
state.job_count = len(batch_images) * p.n_iter
# extract "default" params to use in case getting png info fails
2023-06-20 19:33:36 +08:00
prompt = p.prompt
negative_prompt = p.negative_prompt
seed = p.seed
cfg_scale = p.cfg_scale
sampler_name = p.sampler_name
steps = p.steps
2023-08-25 09:12:19 +08:00
override_settings = p.override_settings
sd_model_checkpoint_override = get_closet_checkpoint_match(override_settings.get("sd_model_checkpoint", None))
batch_results = None
discard_further_results = False
for i, image in enumerate(batch_images):
state.job = f"{i+1} out of {len(batch_images)}"
if state.skipped:
state.skipped = False
if state.interrupted or state.stopping_generation:
break
2023-03-31 16:54:42 +08:00
try:
img = images.read(image)
2023-05-03 13:28:59 +08:00
except UnidentifiedImageError as e:
print(e)
2023-03-31 16:54:42 +08:00
continue
# Use the EXIF orientation of photos taken by smartphones.
img = ImageOps.exif_transpose(img)
2023-05-30 01:38:49 +08:00
2023-05-30 00:47:20 +08:00
if to_scale:
p.width = int(img.width * scale_by)
p.height = int(img.height * scale_by)
2023-05-30 01:38:49 +08:00
p.init_images = [img] * p.batch_size
image_path = Path(image)
if is_inpaint_batch:
# try to find corresponding mask for an image using simple filename matching
if len(inpaint_masks) == 1:
mask_image_path = inpaint_masks[0]
else:
# try to find corresponding mask for an image using simple filename matching
mask_image_dir = Path(inpaint_mask_dir)
masks_found = list(mask_image_dir.glob(f"{image_path.stem}.*"))
if len(masks_found) == 0:
print(f"Warning: mask is not found for {image_path} in {mask_image_dir}. Skipping it.")
continue
# it should contain only 1 matching mask
# otherwise user has many masks with the same name but different extensions
mask_image_path = masks_found[0]
mask_image = images.read(mask_image_path)
p.image_mask = mask_image
2023-06-20 19:33:36 +08:00
if use_png_info:
try:
info_img = img
if png_info_dir:
info_img_path = os.path.join(png_info_dir, os.path.basename(image))
info_img = images.read(info_img_path)
geninfo, _ = images.read_info_from_image(info_img)
2023-06-20 19:33:36 +08:00
parsed_parameters = parse_generation_parameters(geninfo)
2023-07-08 20:42:00 +08:00
parsed_parameters = {k: v for k, v in parsed_parameters.items() if k in (png_info_props or {})}
except Exception:
parsed_parameters = {}
p.prompt = prompt + (" " + parsed_parameters["Prompt"] if "Prompt" in parsed_parameters else "")
p.negative_prompt = negative_prompt + (" " + parsed_parameters["Negative prompt"] if "Negative prompt" in parsed_parameters else "")
p.seed = int(parsed_parameters.get("Seed", seed))
p.cfg_scale = float(parsed_parameters.get("CFG scale", cfg_scale))
p.sampler_name = parsed_parameters.get("Sampler", sampler_name)
p.steps = int(parsed_parameters.get("Steps", steps))
2023-08-25 09:12:19 +08:00
model_info = get_closet_checkpoint_match(parsed_parameters.get("Model hash", None))
if model_info is not None:
p.override_settings['sd_model_checkpoint'] = model_info.name
elif sd_model_checkpoint_override:
p.override_settings['sd_model_checkpoint'] = sd_model_checkpoint_override
else:
p.override_settings.pop("sd_model_checkpoint", None)
if output_dir:
p.outpath_samples = output_dir
p.override_settings['save_to_dirs'] = False
p.override_settings['save_images_replace_action'] = "Add number suffix"
if p.n_iter > 1 or p.batch_size > 1:
p.override_settings['samples_filename_pattern'] = f'{image_path.stem}-[generation_number]'
else:
p.override_settings['samples_filename_pattern'] = f'{image_path.stem}'
proc = modules.scripts.scripts_img2img.run(p, *args)
if proc is None:
p.override_settings.pop('save_images_replace_action', None)
proc = process_images(p)
if not discard_further_results and proc:
if batch_results:
batch_results.images.extend(proc.images)
batch_results.infotexts.extend(proc.infotexts)
else:
batch_results = proc
if 0 <= shared.opts.img2img_batch_show_results_limit < len(batch_results.images):
discard_further_results = True
batch_results.images = batch_results.images[:int(shared.opts.img2img_batch_show_results_limit)]
batch_results.infotexts = batch_results.infotexts[:int(shared.opts.img2img_batch_show_results_limit)]
return batch_results
2024-05-17 03:08:24 +08:00
def img2img(id_task: str, request: gr.Request, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, mask_blur: int, mask_alpha: float, inpainting_fill: int, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, selected_scale_tab: int, height: int, width: int, scale_by: float, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, img2img_batch_use_png_info: bool, img2img_batch_png_info_props: list, img2img_batch_png_info_dir: str, img2img_batch_source_type: str, img2img_batch_upload: list, *args):
override_settings = create_override_settings_dict(override_settings_texts)
is_batch = mode == 5
if mode == 0: # img2img
image = init_img
mask = None
elif mode == 1: # img2img sketch
image = sketch
mask = None
elif mode == 2: # inpaint
image, mask = init_img_with_mask["image"], init_img_with_mask["mask"]
mask = processing.create_binary_mask(mask)
elif mode == 3: # inpaint sketch
image = inpaint_color_sketch
orig = inpaint_color_sketch_orig or inpaint_color_sketch
pred = np.any(np.array(image) != np.array(orig), axis=-1)
mask = Image.fromarray(pred.astype(np.uint8) * 255, "L")
mask = ImageEnhance.Brightness(mask).enhance(1 - mask_alpha / 100)
blur = ImageFilter.GaussianBlur(mask_blur)
image = Image.composite(image.filter(blur), orig, mask.filter(blur))
elif mode == 4: # inpaint upload mask
image = init_img_inpaint
mask = init_mask_inpaint
else:
image = None
mask = None
image = images.fix_image(image)
mask = images.fix_image(mask)
2023-05-30 00:47:20 +08:00
if selected_scale_tab == 1 and not is_batch:
assert image, "Can't scale by because no image is selected"
width = int(image.width * scale_by)
height = int(image.height * scale_by)
assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]'
p = StableDiffusionProcessingImg2Img(
sd_model=shared.sd_model,
outpath_samples=opts.outdir_samples or opts.outdir_img2img_samples,
outpath_grids=opts.outdir_grids or opts.outdir_img2img_grids,
prompt=prompt,
2022-09-09 14:15:36 +08:00
negative_prompt=negative_prompt,
2023-01-14 19:56:39 +08:00
styles=prompt_styles,
batch_size=batch_size,
n_iter=n_iter,
cfg_scale=cfg_scale,
width=width,
height=height,
init_images=[image],
mask=mask,
mask_blur=mask_blur,
inpainting_fill=inpainting_fill,
resize_mode=resize_mode,
denoising_strength=denoising_strength,
image_cfg_scale=image_cfg_scale,
inpaint_full_res=inpaint_full_res,
inpaint_full_res_padding=inpaint_full_res_padding,
2022-09-04 02:02:38 +08:00
inpainting_mask_invert=inpainting_mask_invert,
override_settings=override_settings,
)
2023-04-24 17:36:16 +08:00
p.scripts = modules.scripts.scripts_img2img
p.script_args = args
2022-10-16 23:53:56 +08:00
2023-06-15 03:03:44 +08:00
p.user = request.username
if shared.opts.enable_console_prompts:
print(f"\nimg2img: {prompt}", file=shared.progress_print_out)
with closing(p):
if is_batch:
2024-05-17 03:08:24 +08:00
if img2img_batch_source_type == "upload":
assert isinstance(img2img_batch_upload, list) and img2img_batch_upload
output_dir = ""
inpaint_mask_dir = ""
png_info_dir = img2img_batch_png_info_dir if not shared.cmd_opts.hide_ui_dir_config else ""
processed = process_batch(p, img2img_batch_upload, output_dir, inpaint_mask_dir, args, to_scale=selected_scale_tab == 1, scale_by=scale_by, use_png_info=img2img_batch_use_png_info, png_info_props=img2img_batch_png_info_props, png_info_dir=png_info_dir)
else: # "from dir"
assert not shared.cmd_opts.hide_ui_dir_config, "Launched with --hide-ui-dir-config, batch img2img disabled"
processed = process_batch(p, img2img_batch_input_dir, img2img_batch_output_dir, img2img_batch_inpaint_mask_dir, args, to_scale=selected_scale_tab == 1, scale_by=scale_by, use_png_info=img2img_batch_use_png_info, png_info_props=img2img_batch_png_info_props, png_info_dir=img2img_batch_png_info_dir)
if processed is None:
processed = Processed(p, [], p.seed, "")
else:
processed = modules.scripts.scripts_img2img.run(p, *args)
if processed is None:
processed = process_images(p)
2022-09-08 21:37:13 +08:00
shared.total_tqdm.clear()
generation_info_js = processed.js()
if opts.samples_log_stdout:
print(generation_info_js)
2022-10-04 22:23:48 +08:00
if opts.do_not_show_images:
processed.images = []
return processed.images, generation_info_js, plaintext_to_html(processed.info), plaintext_to_html(processed.comments, classname="comments")