2022-09-03 17:08:45 +08:00
import math
from PIL import Image
from modules . processing import Processed , StableDiffusionProcessingImg2Img , process_images
from modules . shared import opts , state
import modules . shared as shared
import modules . processing as processing
from modules . ui import plaintext_to_html
import modules . images as images
2022-09-03 22:21:15 +08:00
import modules . scripts
2022-09-03 17:08:45 +08:00
2022-09-05 08:25:37 +08:00
def img2img ( prompt : str , init_img , init_img_with_mask , steps : int , sampler_index : int , mask_blur : int , inpainting_fill : int , use_GFPGAN : bool , tiling : bool , mode : int , n_iter : int , batch_size : int , cfg_scale : float , denoising_strength : float , seed : int , height : int , width : int , resize_mode : int , upscaler_index : str , upscale_overlap : int , inpaint_full_res : bool , inpainting_mask_invert : int , * args ) :
2022-09-03 17:08:45 +08:00
is_inpaint = mode == 1
is_loopback = mode == 2
is_upscale = mode == 3
if is_inpaint :
image = init_img_with_mask [ ' image ' ]
mask = init_img_with_mask [ ' mask ' ]
else :
image = init_img
mask = None
assert 0. < = denoising_strength < = 1. , ' can only work with strength in [0.0, 1.0] '
p = StableDiffusionProcessingImg2Img (
sd_model = shared . sd_model ,
outpath_samples = opts . outdir_samples or opts . outdir_img2img_samples ,
outpath_grids = opts . outdir_grids or opts . outdir_img2img_grids ,
prompt = prompt ,
seed = seed ,
sampler_index = sampler_index ,
batch_size = batch_size ,
n_iter = n_iter ,
steps = steps ,
cfg_scale = cfg_scale ,
width = width ,
height = height ,
use_GFPGAN = use_GFPGAN ,
2022-09-05 08:25:37 +08:00
tiling = tiling ,
2022-09-03 17:08:45 +08:00
init_images = [ image ] ,
mask = mask ,
mask_blur = mask_blur ,
inpainting_fill = inpainting_fill ,
resize_mode = resize_mode ,
denoising_strength = denoising_strength ,
inpaint_full_res = inpaint_full_res ,
2022-09-04 02:02:38 +08:00
inpainting_mask_invert = inpainting_mask_invert ,
2022-09-03 17:08:45 +08:00
extra_generation_params = { " Denoising Strength " : denoising_strength }
)
if is_loopback :
output_images , info = None , None
history = [ ]
initial_seed = None
initial_info = None
2022-09-06 07:09:01 +08:00
state . job_count = n_iter
2022-09-03 17:08:45 +08:00
for i in range ( n_iter ) :
2022-09-06 07:09:01 +08:00
2022-09-03 17:08:45 +08:00
p . n_iter = 1
p . batch_size = 1
p . do_not_save_grid = True
state . job = f " Batch { i + 1 } out of { n_iter } "
processed = process_images ( p )
if initial_seed is None :
initial_seed = processed . seed
initial_info = processed . info
p . init_images = [ processed . images [ 0 ] ]
p . seed = processed . seed + 1
p . denoising_strength = max ( p . denoising_strength * 0.95 , 0.1 )
history . append ( processed . images [ 0 ] )
2022-09-06 07:09:01 +08:00
state . nextjob ( )
2022-09-03 17:08:45 +08:00
grid = images . image_grid ( history , batch_size , rows = 1 )
images . save_image ( grid , p . outpath_grids , " grid " , initial_seed , prompt , opts . grid_format , info = info , short_filename = not opts . grid_extended_filename )
processed = Processed ( p , history , initial_seed , initial_info )
elif is_upscale :
initial_seed = None
initial_info = None
2022-09-04 23:54:12 +08:00
upscaler = shared . sd_upscalers [ upscaler_index ]
img = upscaler . upscale ( init_img , init_img . width * 2 , init_img . height * 2 )
2022-09-03 17:08:45 +08:00
processing . torch_gc ( )
grid = images . split_grid ( img , tile_w = width , tile_h = height , overlap = upscale_overlap )
p . n_iter = 1
p . do_not_save_grid = True
p . do_not_save_samples = True
work = [ ]
work_results = [ ]
for y , h , row in grid . tiles :
for tiledata in row :
work . append ( tiledata [ 2 ] )
batch_count = math . ceil ( len ( work ) / p . batch_size )
print ( f " SD upscaling will process a total of { len ( work ) } images tiled as { len ( grid . tiles [ 0 ] [ 2 ] ) } x { len ( grid . tiles ) } in a total of { batch_count } batches. " )
2022-09-06 07:09:01 +08:00
state . job_count = batch_count
2022-09-03 17:08:45 +08:00
for i in range ( batch_count ) :
p . init_images = work [ i * p . batch_size : ( i + 1 ) * p . batch_size ]
state . job = f " Batch { i + 1 } out of { batch_count } "
processed = process_images ( p )
if initial_seed is None :
initial_seed = processed . seed
initial_info = processed . info
p . seed = processed . seed + 1
work_results + = processed . images
2022-09-06 07:09:01 +08:00
state . nextjob ( )
2022-09-03 17:08:45 +08:00
image_index = 0
for y , h , row in grid . tiles :
for tiledata in row :
tiledata [ 2 ] = work_results [ image_index ] if image_index < len ( work_results ) else Image . new ( " RGB " , ( p . width , p . height ) )
image_index + = 1
combined_image = images . combine_grid ( grid )
if opts . samples_save :
images . save_image ( combined_image , p . outpath_samples , " " , initial_seed , prompt , opts . grid_format , info = initial_info )
processed = Processed ( p , [ combined_image ] , initial_seed , initial_info )
else :
2022-09-03 22:21:15 +08:00
2022-09-04 06:29:43 +08:00
processed = modules . scripts . scripts_img2img . run ( p , * args )
2022-09-03 22:21:15 +08:00
if processed is None :
processed = process_images ( p )
2022-09-03 17:08:45 +08:00
return processed . images , processed . js ( ) , plaintext_to_html ( processed . info )