stable-diffusion-webui/modules/shared.py

664 lines
34 KiB
Python
Raw Normal View History

import argparse
import datetime
import json
import os
import sys
import time
from PIL import Image
import gradio as gr
2022-09-08 21:37:13 +08:00
import tqdm
2022-09-11 23:48:36 +08:00
import modules.interrogate
2022-09-17 12:49:31 +08:00
import modules.memmon
import modules.styles
import modules.devices as devices
from modules import localization, script_loading, errors, ui_components, shared_items, cmd_args
from modules.paths_internal import models_path, script_path, data_path, sd_configs_path, sd_default_config, sd_model_file, default_sd_model_file, extensions_dir, extensions_builtin_dir
demo = None
parser = cmd_args.parser
script_loading.preload_extensions(extensions_dir, parser)
script_loading.preload_extensions(extensions_builtin_dir, parser)
2023-03-12 02:22:52 +08:00
if os.environ.get('IGNORE_CMD_ARGS_ERRORS', None) is None:
cmd_opts = parser.parse_args()
else:
cmd_opts, _ = parser.parse_known_args()
restricted_opts = {
"samples_filename_pattern",
"directories_filename_pattern",
"outdir_samples",
"outdir_txt2img_samples",
"outdir_img2img_samples",
"outdir_extras_samples",
"outdir_grids",
"outdir_txt2img_grids",
"outdir_save",
"outdir_init_images"
}
2023-01-03 15:39:21 +08:00
ui_reorder_categories = [
"inpaint",
2023-01-03 15:39:21 +08:00
"sampler",
"checkboxes",
"hires_fix",
2023-01-03 15:39:21 +08:00
"dimensions",
"cfg",
"seed",
"batch",
"override_settings",
2023-01-03 15:39:21 +08:00
"scripts",
]
cmd_opts.disable_extension_access = (cmd_opts.share or cmd_opts.listen or cmd_opts.server_name) and not cmd_opts.enable_insecure_extension_access
devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_esrgan, devices.device_codeformer = \
(devices.cpu if any(y in cmd_opts.use_cpu for y in [x, 'all']) else devices.get_optimal_device() for x in ['sd', 'interrogate', 'gfpgan', 'esrgan', 'codeformer'])
device = devices.device
2022-10-15 01:03:41 +08:00
weight_load_location = None if cmd_opts.lowram else "cpu"
2022-09-11 13:11:27 +08:00
batch_cond_uncond = cmd_opts.always_batch_cond_uncond or not (cmd_opts.lowvram or cmd_opts.medvram)
parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram
2022-10-08 21:20:41 +08:00
xformers_available = False
config_filename = cmd_opts.ui_settings_file
2022-09-07 17:32:28 +08:00
2022-10-12 12:01:20 +08:00
os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True)
2022-11-26 21:10:46 +08:00
hypernetworks = {}
loaded_hypernetworks = []
2022-10-07 15:17:52 +08:00
2022-11-26 21:10:46 +08:00
2022-10-11 19:53:02 +08:00
def reload_hypernetworks():
2022-11-26 21:10:46 +08:00
from modules.hypernetworks import hypernetwork
2022-10-11 19:53:02 +08:00
global hypernetworks
hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
class State:
skipped = False
interrupted = False
job = ""
job_no = 0
job_count = 0
processing_has_refined_job_count = False
2022-09-27 09:26:13 +08:00
job_timestamp = '0'
sampling_step = 0
sampling_steps = 0
2022-09-07 00:33:51 +08:00
current_latent = None
current_image = None
current_image_sampling_step = 0
id_live_preview = 0
textinfo = None
time_start = None
need_restart = False
2023-01-15 00:18:05 +08:00
server_start = None
def skip(self):
self.skipped = True
def interrupt(self):
self.interrupted = True
def nextjob(self):
if opts.live_previews_enable and opts.show_progress_every_n_steps == -1:
self.do_set_current_image()
2022-11-05 02:36:47 +08:00
self.job_no += 1
self.sampling_step = 0
self.current_image_sampling_step = 0
2022-10-19 00:01:22 +08:00
2022-10-30 05:04:29 +08:00
def dict(self):
2022-10-26 22:33:45 +08:00
obj = {
"skipped": self.skipped,
2022-12-31 08:41:47 +08:00
"interrupted": self.interrupted,
2022-10-26 22:33:45 +08:00
"job": self.job,
"job_count": self.job_count,
"job_timestamp": self.job_timestamp,
2022-10-26 22:33:45 +08:00
"job_no": self.job_no,
"sampling_step": self.sampling_step,
"sampling_steps": self.sampling_steps,
}
2022-10-30 05:04:29 +08:00
return obj
2022-10-26 22:33:45 +08:00
def begin(self):
self.sampling_step = 0
self.job_count = -1
self.processing_has_refined_job_count = False
self.job_no = 0
self.job_timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
self.current_latent = None
self.current_image = None
self.current_image_sampling_step = 0
self.id_live_preview = 0
self.skipped = False
self.interrupted = False
self.textinfo = None
self.time_start = time.time()
devices.torch_gc()
def end(self):
self.job = ""
self.job_count = 0
devices.torch_gc()
2022-11-02 17:12:32 +08:00
def set_current_image(self):
"""sets self.current_image from self.current_latent if enough sampling steps have been made after the last call to this"""
if not parallel_processing_allowed:
return
if self.sampling_step - self.current_image_sampling_step >= opts.show_progress_every_n_steps and opts.live_previews_enable and opts.show_progress_every_n_steps != -1:
self.do_set_current_image()
def do_set_current_image(self):
if self.current_latent is None:
return
2022-11-05 02:36:47 +08:00
2022-11-26 21:10:46 +08:00
import modules.sd_samplers
if opts.show_progress_grid:
self.assign_current_image(modules.sd_samplers.samples_to_image_grid(self.current_latent))
else:
self.assign_current_image(modules.sd_samplers.sample_to_image(self.current_latent))
2022-11-02 17:12:32 +08:00
self.current_image_sampling_step = self.sampling_step
def assign_current_image(self, image):
self.current_image = image
self.id_live_preview += 1
state = State()
2023-01-15 00:18:05 +08:00
state.server_start = time.time()
styles_filename = cmd_opts.styles_file
prompt_styles = modules.styles.StyleDatabase(styles_filename)
2022-09-11 23:48:36 +08:00
interrogator = modules.interrogate.InterrogateModels("interrogate")
face_restorers = []
class OptionInfo:
def __init__(self, default=None, label="", component=None, component_args=None, onchange=None, section=None, refresh=None):
self.default = default
self.label = label
self.component = component
self.component_args = component_args
self.onchange = onchange
self.section = section
self.refresh = refresh
2022-10-09 03:12:24 +08:00
def options_section(section_identifier, options_dict):
for k, v in options_dict.items():
2022-10-09 03:12:24 +08:00
v.section = section_identifier
return options_dict
2022-09-25 18:56:32 +08:00
2022-11-26 21:10:46 +08:00
def list_checkpoint_tiles():
import modules.sd_models
return modules.sd_models.checkpoint_tiles()
def refresh_checkpoints():
import modules.sd_models
return modules.sd_models.list_models()
def list_samplers():
import modules.sd_samplers
return modules.sd_samplers.all_samplers
hide_dirs = {"visible": not cmd_opts.hide_ui_dir_config}
tab_names = []
options_templates = {}
options_templates.update(options_section(('saving-images', "Saving images/grids"), {
"samples_save": OptionInfo(True, "Always save all generated images"),
"samples_format": OptionInfo('png', 'File format for images'),
"samples_filename_pattern": OptionInfo("", "Images filename pattern", component_args=hide_dirs),
"save_images_add_number": OptionInfo(True, "Add number to filename when saving", component_args=hide_dirs),
"grid_save": OptionInfo(True, "Always save all generated image grids"),
"grid_format": OptionInfo('png', 'File format for grids'),
"grid_extended_filename": OptionInfo(False, "Add extended info (seed, prompt) to filename when saving grid"),
"grid_only_if_multiple": OptionInfo(True, "Do not save grids consisting of one picture"),
"grid_prevent_empty_spots": OptionInfo(False, "Prevent empty spots in grid (when set to autodetect)"),
"n_rows": OptionInfo(-1, "Grid row count; use -1 for autodetect and 0 for it to be same as batch size", gr.Slider, {"minimum": -1, "maximum": 16, "step": 1}),
"enable_pnginfo": OptionInfo(True, "Save text information about generation parameters as chunks to png files"),
"save_txt": OptionInfo(False, "Create a text file next to every image with generation parameters."),
"save_images_before_face_restoration": OptionInfo(False, "Save a copy of image before doing face restoration."),
"save_images_before_highres_fix": OptionInfo(False, "Save a copy of image before applying highres fix."),
"save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"),
"save_mask": OptionInfo(False, "For inpainting, save a copy of the greyscale mask"),
"save_mask_composite": OptionInfo(False, "For inpainting, save a masked composite"),
"jpeg_quality": OptionInfo(80, "Quality for saved jpeg images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}),
2023-02-25 11:57:18 +08:00
"webp_lossless": OptionInfo(False, "Use lossless compression for webp images"),
"export_for_4chan": OptionInfo(True, "If the saved image file size is above the limit, or its either width or height are above the limit, save a downscaled copy as JPG"),
"img_downscale_threshold": OptionInfo(4.0, "File size limit for the above option, MB", gr.Number),
"target_side_length": OptionInfo(4000, "Width/height limit for the above option, in pixels", gr.Number),
2023-02-28 06:28:04 +08:00
"img_max_size_mp": OptionInfo(200, "Maximum image size, in megapixels", gr.Number),
"use_original_name_batch": OptionInfo(True, "Use original name for output filename during batch process in extras tab"),
"use_upscaler_name_as_suffix": OptionInfo(False, "Use upscaler name as filename suffix in the extras tab"),
"save_selected_only": OptionInfo(True, "When using 'Save' button, only save a single selected image"),
"do_not_add_watermark": OptionInfo(False, "Do not add watermark to images"),
2023-04-07 17:13:51 +08:00
"save_init_img": OptionInfo(False, "Save init images when using img2img"),
"temp_dir": OptionInfo("", "Directory for temporary images; leave empty for default"),
"clean_temp_dir_at_start": OptionInfo(False, "Cleanup non-default temporary directory when starting webui"),
}))
options_templates.update(options_section(('saving-paths', "Paths for saving"), {
"outdir_samples": OptionInfo("", "Output directory for images; if empty, defaults to three directories below", component_args=hide_dirs),
"outdir_txt2img_samples": OptionInfo("outputs/txt2img-images", 'Output directory for txt2img images', component_args=hide_dirs),
"outdir_img2img_samples": OptionInfo("outputs/img2img-images", 'Output directory for img2img images', component_args=hide_dirs),
"outdir_extras_samples": OptionInfo("outputs/extras-images", 'Output directory for images from extras tab', component_args=hide_dirs),
"outdir_grids": OptionInfo("", "Output directory for grids; if empty, defaults to two directories below", component_args=hide_dirs),
"outdir_txt2img_grids": OptionInfo("outputs/txt2img-grids", 'Output directory for txt2img grids', component_args=hide_dirs),
"outdir_img2img_grids": OptionInfo("outputs/img2img-grids", 'Output directory for img2img grids', component_args=hide_dirs),
"outdir_save": OptionInfo("log/images", "Directory for saving images using the Save button", component_args=hide_dirs),
"outdir_init_images": OptionInfo("outputs/init-images", "Directory for saving init images when using img2img", component_args=hide_dirs),
}))
options_templates.update(options_section(('saving-to-dirs', "Saving to a directory"), {
"save_to_dirs": OptionInfo(True, "Save images to a subdirectory"),
"grid_save_to_dirs": OptionInfo(True, "Save grids to a subdirectory"),
2022-10-03 02:50:14 +08:00
"use_save_to_dirs_for_ui": OptionInfo(False, "When using \"Save\" button, save images to a subdirectory"),
"directories_filename_pattern": OptionInfo("[date]", "Directory name pattern", component_args=hide_dirs),
"directories_max_prompt_words": OptionInfo(8, "Max prompt words for [prompt_words] pattern", gr.Slider, {"minimum": 1, "maximum": 20, "step": 1, **hide_dirs}),
}))
options_templates.update(options_section(('upscaling', "Upscaling"), {
"ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers. 0 = no tiling.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}),
"ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}),
"realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": shared_items.realesrgan_models_names()}),
"upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}),
}))
options_templates.update(options_section(('face-restoration', "Face restoration"), {
2023-02-11 06:27:08 +08:00
"face_restoration_model": OptionInfo("CodeFormer", "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in face_restorers]}),
"code_former_weight": OptionInfo(0.5, "CodeFormer weight parameter; 0 = maximum effect; 1 = minimum effect", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
"face_restoration_unload": OptionInfo(False, "Move face restoration model from VRAM into RAM after processing"),
}))
options_templates.update(options_section(('system', "System"), {
"show_warnings": OptionInfo(False, "Show warnings in console."),
"memmon_poll_rate": OptionInfo(8, "VRAM usage polls per second during generation. Set to 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 40, "step": 1}),
"samples_log_stdout": OptionInfo(False, "Always print all generation info to standard output"),
2022-10-04 19:38:45 +08:00
"multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job."),
2023-01-14 15:25:21 +08:00
"print_hypernet_extra": OptionInfo(False, "Print extra hypernetwork information to console."),
}))
options_templates.update(options_section(('training', "Training"), {
"unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training if possible. Saves VRAM."),
"pin_memory": OptionInfo(False, "Turn on pin_memory for DataLoader. Makes training slightly faster but can increase memory usage."),
"save_optimizer_state": OptionInfo(False, "Saves Optimizer state as separate *.optim file. Training of embedding or HN can be resumed with the matching optim file."),
"save_training_settings_to_txt": OptionInfo(True, "Save textual inversion and hypernet settings to a text file whenever training starts."),
"dataset_filename_word_regex": OptionInfo("", "Filename word regex"),
"dataset_filename_join_string": OptionInfo(" ", "Filename join string"),
"training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}),
"training_write_csv_every": OptionInfo(500, "Save an csv containing the loss to log directory every N steps, 0 to disable"),
"training_xattention_optimizations": OptionInfo(False, "Use cross attention optimizations while training"),
"training_enable_tensorboard": OptionInfo(False, "Enable tensorboard logging."),
"training_tensorboard_save_images": OptionInfo(False, "Save generated images within tensorboard."),
"training_tensorboard_flush_every": OptionInfo(120, "How often, in seconds, to flush the pending tensorboard events and summaries to disk."),
}))
options_templates.update(options_section(('sd', "Stable Diffusion"), {
2022-11-26 21:10:46 +08:00
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": list_checkpoint_tiles()}, refresh=refresh_checkpoints),
"sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
2022-12-25 20:49:25 +08:00
"sd_vae_checkpoint_cache": OptionInfo(0, "VAE Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
"sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": shared_items.sd_vae_items()}, refresh=shared_items.refresh_vae_list),
"sd_vae_as_default": OptionInfo(True, "Ignore selected VAE for stable diffusion checkpoints that have their own .vae.pt next to them"),
2022-10-28 02:45:35 +08:00
"inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.5, "maximum": 1.5, "step": 0.01}),
"img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
"img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies (normally you'd do less with less denoising)."),
"img2img_background_color": OptionInfo("#ffffff", "With img2img, fill image's transparent parts with this color.", ui_components.FormColorPicker, {}),
"enable_quantization": OptionInfo(False, "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply."),
2022-10-04 19:38:45 +08:00
"enable_emphasis": OptionInfo(True, "Emphasis: use (text) to make model pay more attention to text and [text] to make it pay less attention"),
"enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"),
"comma_padding_backtrack": OptionInfo(20, "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1 }),
"CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}),
"upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"),
}))
options_templates.update(options_section(('compatibility', "Compatibility"), {
"use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
"use_old_karras_scheduler_sigmas": OptionInfo(False, "Use old karras scheduler sigmas (0.1 to 10)."),
"no_dpmpp_sde_batch_determinism": OptionInfo(False, "Do not make DPM++ SDE deterministic across different batch sizes."),
"use_old_hires_fix_width_height": OptionInfo(False, "For hires fix, use width/height sliders to set final resolution rather than first pass (disables Upscale by, Resize width/height to)."),
}))
options_templates.update(options_section(('interrogate', "Interrogate Options"), {
"interrogate_keep_models_in_memory": OptionInfo(False, "Interrogate: keep models in VRAM"),
"interrogate_return_ranks": OptionInfo(False, "Interrogate: include ranks of model tags matches in results (Has no effect on caption-based interrogators)."),
"interrogate_clip_num_beams": OptionInfo(1, "Interrogate: num_beams for BLIP", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}),
"interrogate_clip_min_length": OptionInfo(24, "Interrogate: minimum description length (excluding artists, etc..)", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}),
"interrogate_clip_max_length": OptionInfo(48, "Interrogate: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}),
"interrogate_clip_dict_limit": OptionInfo(1500, "CLIP: maximum number of lines in text file (0 = No limit)"),
"interrogate_clip_skip_categories": OptionInfo([], "CLIP: skip inquire categories", gr.CheckboxGroup, lambda: {"choices": modules.interrogate.category_types()}, refresh=modules.interrogate.category_types),
"interrogate_deepbooru_score_threshold": OptionInfo(0.5, "Interrogate: deepbooru score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
"deepbooru_sort_alpha": OptionInfo(True, "Interrogate: deepbooru sort alphabetically"),
"deepbooru_use_spaces": OptionInfo(False, "use spaces for tags in deepbooru"),
"deepbooru_escape": OptionInfo(True, "escape (\\) brackets in deepbooru (so they are used as literal brackets and not for emphasis)"),
"deepbooru_filter_tags": OptionInfo("", "filter out those tags from deepbooru output (separated by comma)"),
}))
options_templates.update(options_section(('extra_networks', "Extra Networks"), {
"extra_networks_default_view": OptionInfo("cards", "Default view for Extra Networks", gr.Dropdown, {"choices": ["cards", "thumbs"]}),
"extra_networks_default_multiplier": OptionInfo(1.0, "Multiplier for extra networks", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
2023-03-25 17:12:55 +08:00
"extra_networks_card_width": OptionInfo(0, "Card width for Extra Networks (px)"),
"extra_networks_card_height": OptionInfo(0, "Card height for Extra Networks (px)"),
"extra_networks_add_text_separator": OptionInfo(" ", "Extra text to add before <...> when adding extra network to prompt"),
"sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
}))
options_templates.update(options_section(('ui', "User interface"), {
"return_grid": OptionInfo(True, "Show grid in results for web"),
"return_mask": OptionInfo(False, "For inpainting, include the greyscale mask in results for web"),
"return_mask_composite": OptionInfo(False, "For inpainting, include masked composite in results for web"),
2022-10-04 22:23:48 +08:00
"do_not_show_images": OptionInfo(False, "Do not show any images in results for web"),
"add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"),
2023-01-14 14:56:59 +08:00
"add_model_name_to_info": OptionInfo(True, "Add model name to generation information"),
"disable_weights_auto_swap": OptionInfo(True, "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint."),
"send_seed": OptionInfo(True, "Send seed when sending prompt or image to other interface"),
"send_size": OptionInfo(True, "Send size when sending prompt or image to another interface"),
"font": OptionInfo("", "Font for image grids that have text"),
"js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"),
2022-10-09 03:12:24 +08:00
"js_modal_lightbox_initially_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"),
"show_progress_in_title": OptionInfo(True, "Show generation progress in window title."),
"samplers_in_dropdown": OptionInfo(True, "Use dropdown for sampler selection instead of radio group"),
"dimensions_and_batch_together": OptionInfo(True, "Show Width/Height and Batch sliders in same row"),
2023-01-22 13:05:21 +08:00
"keyedit_precision_attention": OptionInfo(0.1, "Ctrl+up/down precision when editing (attention:1.1)", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
"keyedit_precision_extra": OptionInfo(0.05, "Ctrl+up/down precision when editing <extra networks:0.9>", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
2023-04-22 10:19:58 +08:00
"keyedit_delimiters": OptionInfo(".,\/!?%^*;:{}=`~()", "Ctrl+up/down word delimiters"),
2023-01-22 13:05:21 +08:00
"quicksettings": OptionInfo("sd_model_checkpoint", "Quicksettings list"),
"hidden_tabs": OptionInfo([], "Hidden UI tabs (requires restart)", ui_components.DropdownMulti, lambda: {"choices": [x for x in tab_names]}),
2023-01-22 13:05:21 +08:00
"ui_reorder": OptionInfo(", ".join(ui_reorder_categories), "txt2img/img2img UI item order"),
"ui_extra_networks_tab_reorder": OptionInfo("", "Extra networks tab order"),
2023-01-22 13:05:21 +08:00
"localization": OptionInfo("None", "Localization (requires restart)", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)),
}))
options_templates.update(options_section(('ui', "Live previews"), {
2023-01-16 17:56:30 +08:00
"show_progressbar": OptionInfo(True, "Show progressbar"),
"live_previews_enable": OptionInfo(True, "Show live previews of the created image"),
"show_progress_grid": OptionInfo(True, "Show previews of all images generated in a batch as a grid"),
"show_progress_every_n_steps": OptionInfo(10, "Show new live preview image every N sampling steps. Set to -1 to show after completion of batch.", gr.Slider, {"minimum": -1, "maximum": 32, "step": 1}),
"show_progress_type": OptionInfo("Approx NN", "Image creation progress preview mode", gr.Radio, {"choices": ["Full", "Approx NN", "Approx cheap"]}),
"live_preview_content": OptionInfo("Prompt", "Live preview subject", gr.Radio, {"choices": ["Combined", "Prompt", "Negative prompt"]}),
"live_preview_refresh_period": OptionInfo(1000, "Progressbar/preview update period, in milliseconds")
}))
options_templates.update(options_section(('sampler-params', "Sampler parameters"), {
2022-11-26 21:10:46 +08:00
"hide_samplers": OptionInfo([], "Hide samplers in user interface (requires restart)", gr.CheckboxGroup, lambda: {"choices": [x.name for x in list_samplers()]}),
"eta_ddim": OptionInfo(0.0, "eta (noise multiplier) for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"eta_ancestral": OptionInfo(1.0, "eta (noise multiplier) for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}),
's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
2022-10-11 01:32:37 +08:00
'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}),
2022-12-27 04:49:33 +08:00
'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma"),
2023-03-11 08:56:14 +08:00
'uni_pc_variant': OptionInfo("bh1", "UniPC variant", gr.Radio, {"choices": ["bh1", "bh2", "vary_coeff"]}),
2023-02-10 21:27:05 +08:00
'uni_pc_skip_type': OptionInfo("time_uniform", "UniPC skip type", gr.Radio, {"choices": ["time_uniform", "time_quadratic", "logSNR"]}),
2023-02-10 21:36:41 +08:00
'uni_pc_order': OptionInfo(3, "UniPC order (must be < sampling steps)", gr.Slider, {"minimum": 1, "maximum": 50, "step": 1}),
2023-02-10 21:27:05 +08:00
'uni_pc_lower_order_final': OptionInfo(True, "UniPC lower order final"),
}))
2023-01-23 14:24:43 +08:00
options_templates.update(options_section(('postprocessing', "Postprocessing"), {
'postprocessing_enable_in_main_ui': OptionInfo([], "Enable postprocessing operations in txt2img and img2img tabs", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
'postprocessing_operation_order': OptionInfo([], "Postprocessing operation order", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
2023-01-23 14:24:43 +08:00
'upscaling_max_images_in_cache': OptionInfo(5, "Maximum number of images in upscaling cache", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
}))
options_templates.update(options_section((None, "Hidden options"), {
"disabled_extensions": OptionInfo([], "Disable these extensions"),
"disable_all_extensions": OptionInfo("none", "Disable all extensions (preserves the list of disabled extensions)", gr.Radio, {"choices": ["none", "extra", "all"]}),
"sd_checkpoint_hash": OptionInfo("", "SHA256 hash of the current checkpoint"),
}))
options_templates.update()
class Options:
data = None
data_labels = options_templates
typemap = {int: float}
def __init__(self):
self.data = {k: v.default for k, v in self.data_labels.items()}
def __setattr__(self, key, value):
if self.data is not None:
if key in self.data or key in self.data_labels:
assert not cmd_opts.freeze_settings, "changing settings is disabled"
info = opts.data_labels.get(key, None)
comp_args = info.component_args if info else None
if isinstance(comp_args, dict) and comp_args.get('visible', True) is False:
raise RuntimeError(f"not possible to set {key} because it is restricted")
if cmd_opts.hide_ui_dir_config and key in restricted_opts:
raise RuntimeError(f"not possible to set {key} because it is restricted")
self.data[key] = value
return
return super(Options, self).__setattr__(key, value)
def __getattr__(self, item):
if self.data is not None:
if item in self.data:
return self.data[item]
if item in self.data_labels:
return self.data_labels[item].default
return super(Options, self).__getattribute__(item)
def set(self, key, value):
"""sets an option and calls its onchange callback, returning True if the option changed and False otherwise"""
oldval = self.data.get(key, None)
if oldval == value:
return False
try:
setattr(self, key, value)
except RuntimeError:
return False
if self.data_labels[key].onchange is not None:
try:
self.data_labels[key].onchange()
except Exception as e:
errors.display(e, f"changing setting {key} to {value}")
setattr(self, key, oldval)
return False
return True
2023-03-11 17:09:36 +08:00
def get_default(self, key):
"""returns the default value for the key"""
data_label = self.data_labels.get(key)
if data_label is None:
return None
return data_label.default
def save(self, filename):
assert not cmd_opts.freeze_settings, "saving settings is disabled"
with open(filename, "w", encoding="utf8") as file:
2022-10-24 14:14:34 +08:00
json.dump(self.data, file, indent=4)
def same_type(self, x, y):
if x is None or y is None:
return True
type_x = self.typemap.get(type(x), type(x))
type_y = self.typemap.get(type(y), type(y))
return type_x == type_y
def load(self, filename):
with open(filename, "r", encoding="utf8") as file:
self.data = json.load(file)
bad_settings = 0
for k, v in self.data.items():
info = self.data_labels.get(k, None)
if info is not None and not self.same_type(info.default, v):
print(f"Warning: bad setting value: {k}: {v} ({type(v).__name__}; expected {type(info.default).__name__})", file=sys.stderr)
bad_settings += 1
if bad_settings > 0:
print(f"The program is likely to not work with bad settings.\nSettings file: {filename}\nEither fix the file, or delete it and restart.", file=sys.stderr)
2022-10-30 22:54:31 +08:00
def onchange(self, key, func, call=True):
item = self.data_labels.get(key)
item.onchange = func
2022-10-30 22:54:31 +08:00
if call:
func()
2022-10-14 01:12:37 +08:00
def dumpjson(self):
d = {k: self.data.get(k, self.data_labels.get(k).default) for k in self.data_labels.keys()}
return json.dumps(d)
def add_option(self, key, info):
self.data_labels[key] = info
def reorder(self):
"""reorder settings so that all items related to section always go together"""
section_ids = {}
settings_items = self.data_labels.items()
for k, item in settings_items:
if item.section not in section_ids:
section_ids[item.section] = len(section_ids)
self.data_labels = {k: v for k, v in sorted(settings_items, key=lambda x: section_ids[x[1].section])}
def cast_value(self, key, value):
"""casts an arbitrary to the same type as this setting's value with key
Example: cast_value("eta_noise_seed_delta", "12") -> returns 12 (an int rather than str)
"""
if value is None:
return None
default_value = self.data_labels[key].default
if default_value is None:
default_value = getattr(self, key, None)
if default_value is None:
return None
expected_type = type(default_value)
if expected_type == bool and value == "False":
value = False
else:
value = expected_type(value)
return value
opts = Options()
if os.path.exists(config_filename):
opts.load(config_filename)
settings_components = None
"""assinged from ui.py, a mapping on setting anmes to gradio components repsponsible for those settings"""
2023-01-03 00:42:10 +08:00
latent_upscale_default_mode = "Latent"
latent_upscale_modes = {
2023-01-04 18:12:06 +08:00
"Latent": {"mode": "bilinear", "antialias": False},
"Latent (antialiased)": {"mode": "bilinear", "antialias": True},
"Latent (bicubic)": {"mode": "bicubic", "antialias": False},
"Latent (bicubic antialiased)": {"mode": "bicubic", "antialias": True},
2023-01-04 18:12:06 +08:00
"Latent (nearest)": {"mode": "nearest", "antialias": False},
"Latent (nearest-exact)": {"mode": "nearest-exact", "antialias": False},
2023-01-03 00:42:10 +08:00
}
2022-09-04 23:54:12 +08:00
sd_upscalers = []
sd_model = None
2022-10-16 23:53:56 +08:00
clip_model = None
2022-09-08 21:37:13 +08:00
progress_print_out = sys.stdout
2022-09-08 21:37:13 +08:00
class TotalTQDM:
def __init__(self):
self._tqdm = None
def reset(self):
self._tqdm = tqdm.tqdm(
desc="Total progress",
total=state.job_count * state.sampling_steps,
position=1,
file=progress_print_out
)
def update(self):
if not opts.multiple_tqdm or cmd_opts.disable_console_progressbars:
2022-09-08 21:37:13 +08:00
return
if self._tqdm is None:
self.reset()
self._tqdm.update()
def updateTotal(self, new_total):
if not opts.multiple_tqdm or cmd_opts.disable_console_progressbars:
return
if self._tqdm is None:
self.reset()
self._tqdm.total = new_total
2022-09-08 21:37:13 +08:00
def clear(self):
if self._tqdm is not None:
2023-03-12 21:19:23 +08:00
self._tqdm.refresh()
2022-09-08 21:37:13 +08:00
self._tqdm.close()
self._tqdm = None
total_tqdm = TotalTQDM()
2022-09-17 12:49:31 +08:00
mem_mon = modules.memmon.MemUsageMonitor("MemMon", device, opts)
mem_mon.start()
def listfiles(dirname):
filenames = [os.path.join(dirname, x) for x in sorted(os.listdir(dirname), key=str.lower) if not x.startswith(".")]
return [file for file in filenames if os.path.isfile(file)]
def html_path(filename):
return os.path.join(script_path, "html", filename)
def html(filename):
path = html_path(filename)
if os.path.exists(path):
with open(path, encoding="utf8") as file:
return file.read()
return ""