stable-diffusion-webui/modules/gfpgan_model_arch.py

151 lines
6.3 KiB
Python
Raw Normal View History

2022-09-26 22:29:50 +08:00
# GFPGAN likes to download stuff "wherever", and we're trying to fix that, so this is a copy of the original...
import cv2
import os
import torch
from basicsr.utils import img2tensor, tensor2img
from basicsr.utils.download_util import load_file_from_url
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
from torchvision.transforms.functional import normalize
from gfpgan.archs.gfpgan_bilinear_arch import GFPGANBilinear
from gfpgan.archs.gfpganv1_arch import GFPGANv1
from gfpgan.archs.gfpganv1_clean_arch import GFPGANv1Clean
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
class GFPGANerr():
"""Helper for restoration with GFPGAN.
It will detect and crop faces, and then resize the faces to 512x512.
GFPGAN is used to restored the resized faces.
The background is upsampled with the bg_upsampler.
Finally, the faces will be pasted back to the upsample background image.
Args:
model_path (str): The path to the GFPGAN model. It can be urls (will first download it automatically).
upscale (float): The upscale of the final output. Default: 2.
arch (str): The GFPGAN architecture. Option: clean | original. Default: clean.
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
bg_upsampler (nn.Module): The upsampler for the background. Default: None.
"""
def __init__(self, model_path, model_dir, upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=None, device=None):
self.upscale = upscale
self.bg_upsampler = bg_upsampler
# initialize model
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device is None else device
# initialize the GFP-GAN
if arch == 'clean':
self.gfpgan = GFPGANv1Clean(
out_size=512,
num_style_feat=512,
channel_multiplier=channel_multiplier,
decoder_load_path=None,
fix_decoder=False,
num_mlp=8,
input_is_latent=True,
different_w=True,
narrow=1,
sft_half=True)
elif arch == 'bilinear':
self.gfpgan = GFPGANBilinear(
out_size=512,
num_style_feat=512,
channel_multiplier=channel_multiplier,
decoder_load_path=None,
fix_decoder=False,
num_mlp=8,
input_is_latent=True,
different_w=True,
narrow=1,
sft_half=True)
elif arch == 'original':
self.gfpgan = GFPGANv1(
out_size=512,
num_style_feat=512,
channel_multiplier=channel_multiplier,
decoder_load_path=None,
fix_decoder=True,
num_mlp=8,
input_is_latent=True,
different_w=True,
narrow=1,
sft_half=True)
elif arch == 'RestoreFormer':
from gfpgan.archs.restoreformer_arch import RestoreFormer
self.gfpgan = RestoreFormer()
# initialize face helper
self.face_helper = FaceRestoreHelper(
upscale,
face_size=512,
crop_ratio=(1, 1),
det_model='retinaface_resnet50',
save_ext='png',
use_parse=True,
device=self.device,
model_rootpath=model_dir)
if model_path.startswith('https://'):
model_path = load_file_from_url(
url=model_path, model_dir=model_dir, progress=True, file_name=None)
loadnet = torch.load(model_path)
if 'params_ema' in loadnet:
keyname = 'params_ema'
else:
keyname = 'params'
self.gfpgan.load_state_dict(loadnet[keyname], strict=True)
self.gfpgan.eval()
self.gfpgan = self.gfpgan.to(self.device)
@torch.no_grad()
def enhance(self, img, has_aligned=False, only_center_face=False, paste_back=True, weight=0.5):
self.face_helper.clean_all()
if has_aligned: # the inputs are already aligned
img = cv2.resize(img, (512, 512))
self.face_helper.cropped_faces = [img]
else:
self.face_helper.read_image(img)
# get face landmarks for each face
self.face_helper.get_face_landmarks_5(only_center_face=only_center_face, eye_dist_threshold=5)
# eye_dist_threshold=5: skip faces whose eye distance is smaller than 5 pixels
# TODO: even with eye_dist_threshold, it will still introduce wrong detections and restorations.
# align and warp each face
self.face_helper.align_warp_face()
# face restoration
for cropped_face in self.face_helper.cropped_faces:
# prepare data
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
cropped_face_t = cropped_face_t.unsqueeze(0).to(self.device)
try:
output = self.gfpgan(cropped_face_t, return_rgb=False, weight=weight)[0]
# convert to image
restored_face = tensor2img(output.squeeze(0), rgb2bgr=True, min_max=(-1, 1))
except RuntimeError as error:
print(f'\tFailed inference for GFPGAN: {error}.')
restored_face = cropped_face
restored_face = restored_face.astype('uint8')
self.face_helper.add_restored_face(restored_face)
if not has_aligned and paste_back:
# upsample the background
if self.bg_upsampler is not None:
# Now only support RealESRGAN for upsampling background
bg_img = self.bg_upsampler.enhance(img, outscale=self.upscale)[0]
else:
bg_img = None
self.face_helper.get_inverse_affine(None)
# paste each restored face to the input image
restored_img = self.face_helper.paste_faces_to_input_image(upsample_img=bg_img)
return self.face_helper.cropped_faces, self.face_helper.restored_faces, restored_img
else:
return self.face_helper.cropped_faces, self.face_helper.restored_faces, None