stable-diffusion-webui/modules/models/sd3/sd3_model.py

85 lines
2.7 KiB
Python
Raw Normal View History

2024-06-16 13:04:31 +08:00
import contextlib
import torch
import k_diffusion
from modules.models.sd3.sd3_impls import BaseModel, SDVAE, SD3LatentFormat
from modules.models.sd3.sd3_cond import SD3Cond
2024-06-16 13:04:31 +08:00
from modules import shared, devices
2024-06-24 15:15:46 +08:00
2024-06-16 13:04:31 +08:00
class SD3Denoiser(k_diffusion.external.DiscreteSchedule):
def __init__(self, inner_model, sigmas):
super().__init__(sigmas, quantize=shared.opts.enable_quantization)
self.inner_model = inner_model
def forward(self, input, sigma, **kwargs):
return self.inner_model.apply_model(input, sigma, **kwargs)
class SD3Inferencer(torch.nn.Module):
def __init__(self, state_dict, shift=3, use_ema=False):
super().__init__()
self.shift = shift
with torch.no_grad():
self.model = BaseModel(shift=shift, state_dict=state_dict, prefix="model.diffusion_model.", device="cpu", dtype=devices.dtype)
self.first_stage_model = SDVAE(device="cpu", dtype=devices.dtype_vae)
self.first_stage_model.dtype = self.model.diffusion_model.dtype
self.alphas_cumprod = 1 / (self.model.model_sampling.sigmas ** 2 + 1)
self.text_encoders = SD3Cond()
2024-06-16 13:04:31 +08:00
self.cond_stage_key = 'txt'
self.parameterization = "eps"
self.model.conditioning_key = "crossattn"
self.latent_format = SD3LatentFormat()
self.latent_channels = 16
@property
def cond_stage_model(self):
return self.text_encoders
def before_load_weights(self, state_dict):
self.cond_stage_model.before_load_weights(state_dict)
2024-06-16 13:04:31 +08:00
def ema_scope(self):
return contextlib.nullcontext()
def get_learned_conditioning(self, batch: list[str]):
return self.cond_stage_model(batch)
2024-06-16 13:04:31 +08:00
def apply_model(self, x, t, cond):
2024-06-24 15:15:46 +08:00
return self.model(x, t, c_crossattn=cond['crossattn'], y=cond['vector'])
2024-06-16 13:04:31 +08:00
def decode_first_stage(self, latent):
latent = self.latent_format.process_out(latent)
return self.first_stage_model.decode(latent)
def encode_first_stage(self, image):
latent = self.first_stage_model.encode(image)
return self.latent_format.process_in(latent)
def get_first_stage_encoding(self, x):
return x
2024-06-16 13:04:31 +08:00
def create_denoiser(self):
return SD3Denoiser(self, self.model.model_sampling.sigmas)
2024-06-24 15:15:46 +08:00
def medvram_fields(self):
return [
(self, 'first_stage_model'),
(self, 'cond_stage_model'),
(self, 'model'),
]
2024-06-28 14:23:41 +08:00
def add_noise_to_latent(self, x, noise, amount):
return x * (1 - amount) + noise * amount
def fix_dimensions(self, width, height):
return width // 16 * 16, height // 16 * 16