stable-diffusion-webui/modules/models/sd3/sd3_cond.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

223 lines
7.9 KiB
Python
Raw Normal View History

import os
import safetensors
import torch
import typing
from transformers import CLIPTokenizer, T5TokenizerFast
from modules import shared, devices, modelloader, sd_hijack_clip, prompt_parser
from modules.models.sd3.other_impls import SDClipModel, SDXLClipG, T5XXLModel, SD3Tokenizer
class SafetensorsMapping(typing.Mapping):
def __init__(self, file):
self.file = file
def __len__(self):
return len(self.file.keys())
def __iter__(self):
for key in self.file.keys():
yield key
def __getitem__(self, key):
return self.file.get_tensor(key)
CLIPL_URL = "https://huggingface.co/AUTOMATIC/stable-diffusion-3-medium-text-encoders/resolve/main/clip_l.safetensors"
CLIPL_CONFIG = {
"hidden_act": "quick_gelu",
"hidden_size": 768,
"intermediate_size": 3072,
"num_attention_heads": 12,
"num_hidden_layers": 12,
}
CLIPG_URL = "https://huggingface.co/AUTOMATIC/stable-diffusion-3-medium-text-encoders/resolve/main/clip_g.safetensors"
CLIPG_CONFIG = {
"hidden_act": "gelu",
"hidden_size": 1280,
"intermediate_size": 5120,
"num_attention_heads": 20,
"num_hidden_layers": 32,
2024-07-07 21:36:53 +08:00
"textual_inversion_key": "clip_g",
}
T5_URL = "https://huggingface.co/AUTOMATIC/stable-diffusion-3-medium-text-encoders/resolve/main/t5xxl_fp16.safetensors"
T5_CONFIG = {
"d_ff": 10240,
"d_model": 4096,
"num_heads": 64,
"num_layers": 24,
"vocab_size": 32128,
}
class Sd3ClipLG(sd_hijack_clip.TextConditionalModel):
def __init__(self, clip_l, clip_g):
super().__init__()
self.clip_l = clip_l
self.clip_g = clip_g
self.tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
empty = self.tokenizer('')["input_ids"]
self.id_start = empty[0]
self.id_end = empty[1]
self.id_pad = empty[1]
self.return_pooled = True
def tokenize(self, texts):
return self.tokenizer(texts, truncation=False, add_special_tokens=False)["input_ids"]
def encode_with_transformers(self, tokens):
tokens_g = tokens.clone()
for batch_pos in range(tokens_g.shape[0]):
index = tokens_g[batch_pos].cpu().tolist().index(self.id_end)
tokens_g[batch_pos, index+1:tokens_g.shape[1]] = 0
l_out, l_pooled = self.clip_l(tokens)
g_out, g_pooled = self.clip_g(tokens_g)
lg_out = torch.cat([l_out, g_out], dim=-1)
lg_out = torch.nn.functional.pad(lg_out, (0, 4096 - lg_out.shape[-1]))
vector_out = torch.cat((l_pooled, g_pooled), dim=-1)
lg_out.pooled = vector_out
return lg_out
def encode_embedding_init_text(self, init_text, nvpt):
return torch.zeros((nvpt, 768+1280), device=devices.device) # XXX
class Sd3T5(torch.nn.Module):
def __init__(self, t5xxl):
super().__init__()
self.t5xxl = t5xxl
self.tokenizer = T5TokenizerFast.from_pretrained("google/t5-v1_1-xxl")
empty = self.tokenizer('', padding='max_length', max_length=2)["input_ids"]
self.id_end = empty[0]
self.id_pad = empty[1]
def tokenize(self, texts):
return self.tokenizer(texts, truncation=False, add_special_tokens=False)["input_ids"]
def tokenize_line(self, line, *, target_token_count=None):
if shared.opts.emphasis != "None":
parsed = prompt_parser.parse_prompt_attention(line)
else:
parsed = [[line, 1.0]]
tokenized = self.tokenize([text for text, _ in parsed])
tokens = []
multipliers = []
for text_tokens, (text, weight) in zip(tokenized, parsed):
if text == 'BREAK' and weight == -1:
continue
tokens += text_tokens
multipliers += [weight] * len(text_tokens)
tokens += [self.id_end]
multipliers += [1.0]
if target_token_count is not None:
if len(tokens) < target_token_count:
tokens += [self.id_pad] * (target_token_count - len(tokens))
multipliers += [1.0] * (target_token_count - len(tokens))
else:
tokens = tokens[0:target_token_count]
multipliers = multipliers[0:target_token_count]
return tokens, multipliers
def forward(self, texts, *, token_count):
if not self.t5xxl or not shared.opts.sd3_enable_t5:
return torch.zeros((len(texts), token_count, 4096), device=devices.device, dtype=devices.dtype)
tokens_batch = []
for text in texts:
tokens, multipliers = self.tokenize_line(text, target_token_count=token_count)
tokens_batch.append(tokens)
t5_out, t5_pooled = self.t5xxl(tokens_batch)
return t5_out
def encode_embedding_init_text(self, init_text, nvpt):
return torch.zeros((nvpt, 4096), device=devices.device) # XXX
class SD3Cond(torch.nn.Module):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.tokenizer = SD3Tokenizer()
with torch.no_grad():
self.clip_g = SDXLClipG(CLIPG_CONFIG, device="cpu", dtype=devices.dtype)
self.clip_l = SDClipModel(layer="hidden", layer_idx=-2, device="cpu", dtype=devices.dtype, layer_norm_hidden_state=False, return_projected_pooled=False, textmodel_json_config=CLIPL_CONFIG)
if shared.opts.sd3_enable_t5:
self.t5xxl = T5XXLModel(T5_CONFIG, device="cpu", dtype=devices.dtype)
else:
self.t5xxl = None
self.model_lg = Sd3ClipLG(self.clip_l, self.clip_g)
self.model_t5 = Sd3T5(self.t5xxl)
def forward(self, prompts: list[str]):
with devices.without_autocast():
lg_out, vector_out = self.model_lg(prompts)
t5_out = self.model_t5(prompts, token_count=lg_out.shape[1])
lgt_out = torch.cat([lg_out, t5_out], dim=-2)
return {
'crossattn': lgt_out,
'vector': vector_out,
}
def before_load_weights(self, state_dict):
clip_path = os.path.join(shared.models_path, "CLIP")
if 'text_encoders.clip_g.transformer.text_model.embeddings.position_embedding.weight' not in state_dict:
clip_g_file = modelloader.load_file_from_url(CLIPG_URL, model_dir=clip_path, file_name="clip_g.safetensors")
with safetensors.safe_open(clip_g_file, framework="pt") as file:
self.clip_g.transformer.load_state_dict(SafetensorsMapping(file))
if 'text_encoders.clip_l.transformer.text_model.embeddings.position_embedding.weight' not in state_dict:
clip_l_file = modelloader.load_file_from_url(CLIPL_URL, model_dir=clip_path, file_name="clip_l.safetensors")
with safetensors.safe_open(clip_l_file, framework="pt") as file:
self.clip_l.transformer.load_state_dict(SafetensorsMapping(file), strict=False)
if self.t5xxl and 'text_encoders.t5xxl.transformer.encoder.embed_tokens.weight' not in state_dict:
t5_file = modelloader.load_file_from_url(T5_URL, model_dir=clip_path, file_name="t5xxl_fp16.safetensors")
with safetensors.safe_open(t5_file, framework="pt") as file:
self.t5xxl.transformer.load_state_dict(SafetensorsMapping(file), strict=False)
def encode_embedding_init_text(self, init_text, nvpt):
2024-07-07 21:36:53 +08:00
return self.model_lg.encode_embedding_init_text(init_text, nvpt)
def tokenize(self, texts):
return self.model_lg.tokenize(texts)
def medvram_modules(self):
return [self.clip_g, self.clip_l, self.t5xxl]
def get_token_count(self, text):
_, token_count = self.model_lg.process_texts([text])
return token_count
def get_target_prompt_token_count(self, token_count):
return self.model_lg.get_target_prompt_token_count(token_count)