mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-04 05:45:05 +08:00
43 lines
1.4 KiB
Python
43 lines
1.4 KiB
Python
|
import contextlib
|
||
|
from modules import shared
|
||
|
from modules.sd_hijack_utils import CondFunc
|
||
|
|
||
|
has_ipex = False
|
||
|
try:
|
||
|
import torch
|
||
|
import intel_extension_for_pytorch as ipex
|
||
|
has_ipex = True
|
||
|
except Exception:
|
||
|
pass
|
||
|
|
||
|
def check_for_xpu():
|
||
|
if not has_ipex:
|
||
|
return False
|
||
|
|
||
|
return hasattr(torch, 'xpu') and torch.xpu.is_available()
|
||
|
|
||
|
has_xpu = check_for_xpu()
|
||
|
|
||
|
def get_xpu_device_string():
|
||
|
if shared.cmd_opts.device_id is not None:
|
||
|
return f"xpu:{shared.cmd_opts.device_id}"
|
||
|
return "xpu"
|
||
|
|
||
|
def return_null_context(*args, **kwargs): # pylint: disable=unused-argument
|
||
|
return contextlib.nullcontext()
|
||
|
|
||
|
if has_xpu:
|
||
|
CondFunc('torch.Generator',
|
||
|
lambda orig_func, device=None: torch.xpu.Generator(device),
|
||
|
lambda orig_func, device=None: device is not None and device != torch.device("cpu") and device != "cpu")
|
||
|
|
||
|
CondFunc('torch.nn.functional.layer_norm',
|
||
|
lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs:
|
||
|
orig_func(input.to(weight.data.dtype), normalized_shape, weight, *args, **kwargs),
|
||
|
lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs:
|
||
|
weight is not None and input.dtype != weight.data.dtype)
|
||
|
|
||
|
CondFunc('torch.nn.modules.GroupNorm.forward',
|
||
|
lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
|
||
|
lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
|