stable-diffusion-webui/modules/sd_hijack.py

265 lines
11 KiB
Python
Raw Normal View History

import torch
2022-10-03 05:31:19 +08:00
from torch.nn.functional import silu
from types import MethodType
import modules.textual_inversion.textual_inversion
from modules import devices, sd_hijack_optimizations, shared, sd_hijack_checkpoint
from modules.hypernetworks import hypernetwork
from modules.shared import cmd_opts
2022-12-31 23:06:35 +08:00
from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet, sd_hijack_xlmr, xlmr
2022-11-26 21:10:46 +08:00
import ldm.modules.attention
2022-09-13 19:29:56 +08:00
import ldm.modules.diffusionmodules.model
import ldm.modules.diffusionmodules.openaimodel
import ldm.models.diffusion.ddim
import ldm.models.diffusion.plms
2022-11-26 21:10:46 +08:00
import ldm.modules.encoders.modules
2022-09-13 19:29:56 +08:00
attention_CrossAttention_forward = ldm.modules.attention.CrossAttention.forward
diffusionmodules_model_nonlinearity = ldm.modules.diffusionmodules.model.nonlinearity
diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward
2022-09-13 19:29:56 +08:00
2022-11-26 21:10:46 +08:00
# new memory efficient cross attention blocks do not support hypernets and we already
# have memory efficient cross attention anyway, so this disables SD2.0's memory efficient cross attention
ldm.modules.attention.MemoryEfficientCrossAttention = ldm.modules.attention.CrossAttention
ldm.modules.attention.BasicTransformerBlock.ATTENTION_MODES["softmax-xformers"] = ldm.modules.attention.CrossAttention
# silence new console spam from SD2
ldm.modules.attention.print = lambda *args: None
ldm.modules.diffusionmodules.model.print = lambda *args: None
def apply_optimizations():
undo_optimizations()
2022-10-03 05:31:19 +08:00
ldm.modules.diffusionmodules.model.nonlinearity = silu
ldm.modules.diffusionmodules.openaimodel.th = sd_hijack_unet.th
2023-01-04 21:04:38 +08:00
optimization_method = None
2022-09-13 19:29:56 +08:00
2022-10-16 00:19:54 +08:00
if cmd_opts.force_enable_xformers or (cmd_opts.xformers and shared.xformers_available and torch.version.cuda and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (9, 0)):
print("Applying xformers cross attention optimization.")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.xformers_attention_forward
2022-10-18 03:19:18 +08:00
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.xformers_attnblock_forward
2023-01-04 21:04:38 +08:00
optimization_method = 'xformers'
elif cmd_opts.opt_sub_quad_attention:
print("Applying sub-quadratic cross attention optimization.")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.sub_quad_attention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.sub_quad_attnblock_forward
optimization_method = 'sub-quadratic'
2022-10-08 09:10:35 +08:00
elif cmd_opts.opt_split_attention_v1:
print("Applying v1 cross attention optimization.")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1
2023-01-04 21:04:38 +08:00
optimization_method = 'V1'
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention_invokeai or not cmd_opts.opt_split_attention and not torch.cuda.is_available()):
print("Applying cross attention optimization (InvokeAI).")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_invokeAI
optimization_method = 'InvokeAI'
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()):
print("Applying cross attention optimization (Doggettx).")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.cross_attention_attnblock_forward
2023-01-04 21:04:38 +08:00
optimization_method = 'Doggettx'
return optimization_method
2022-09-13 19:29:56 +08:00
def undo_optimizations():
ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
ldm.modules.diffusionmodules.model.nonlinearity = diffusionmodules_model_nonlinearity
ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward
2022-09-13 19:29:56 +08:00
def fix_checkpoint():
"""checkpoints are now added and removed in embedding/hypernet code, since torch doesn't want
checkpoints to be added when not training (there's a warning)"""
pass
def weighted_loss(sd_model, pred, target, mean=True):
#Calculate the weight normally, but ignore the mean
loss = sd_model._old_get_loss(pred, target, mean=False)
#Check if we have weights available
weight = getattr(sd_model, '_custom_loss_weight', None)
if weight is not None:
loss *= weight
#Return the loss, as mean if specified
return loss.mean() if mean else loss
def weighted_forward(sd_model, x, c, w, *args, **kwargs):
try:
#Temporarily append weights to a place accessible during loss calc
sd_model._custom_loss_weight = w
#Replace 'get_loss' with a weight-aware one. Otherwise we need to reimplement 'forward' completely
#Keep 'get_loss', but don't overwrite the previous old_get_loss if it's already set
if not hasattr(sd_model, '_old_get_loss'):
sd_model._old_get_loss = sd_model.get_loss
sd_model.get_loss = MethodType(weighted_loss, sd_model)
#Run the standard forward function, but with the patched 'get_loss'
return sd_model.forward(x, c, *args, **kwargs)
finally:
try:
#Delete temporary weights if appended
del sd_model._custom_loss_weight
except AttributeError as e:
pass
#If we have an old loss function, reset the loss function to the original one
if hasattr(sd_model, '_old_get_loss'):
sd_model.get_loss = sd_model._old_get_loss
del sd_model._old_get_loss
def apply_weighted_forward(sd_model):
#Add new function 'weighted_forward' that can be called to calc weighted loss
sd_model.weighted_forward = MethodType(weighted_forward, sd_model)
def undo_weighted_forward(sd_model):
try:
del sd_model.weighted_forward
except AttributeError as e:
pass
class StableDiffusionModelHijack:
fixes = None
comments = []
layers = None
circular_enabled = False
clip = None
2023-01-04 21:04:38 +08:00
optimization_method = None
embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase()
def __init__(self):
self.embedding_db.add_embedding_dir(cmd_opts.embeddings_dir)
2022-11-30 10:13:17 +08:00
def hijack(self, m):
2022-12-31 23:06:35 +08:00
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
model_embeddings = m.cond_stage_model.roberta.embeddings
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.word_embeddings, self)
2022-12-31 23:06:35 +08:00
m.cond_stage_model = sd_hijack_xlmr.FrozenXLMREmbedderWithCustomWords(m.cond_stage_model, self)
elif type(m.cond_stage_model) == ldm.modules.encoders.modules.FrozenCLIPEmbedder:
2022-11-26 21:10:46 +08:00
model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self)
m.cond_stage_model = sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords(m.cond_stage_model, self)
2022-12-31 23:06:35 +08:00
2022-11-26 21:10:46 +08:00
elif type(m.cond_stage_model) == ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder:
m.cond_stage_model.model.token_embedding = EmbeddingsWithFixes(m.cond_stage_model.model.token_embedding, self)
m.cond_stage_model = sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords(m.cond_stage_model, self)
2022-12-31 23:06:35 +08:00
apply_weighted_forward(m)
if m.cond_stage_key == "edit":
sd_hijack_unet.hijack_ddpm_edit()
2023-01-04 21:04:38 +08:00
self.optimization_method = apply_optimizations()
2022-12-31 23:06:35 +08:00
self.clip = m.cond_stage_model
def flatten(el):
flattened = [flatten(children) for children in el.children()]
res = [el]
for c in flattened:
res += c
return res
self.layers = flatten(m)
def undo_hijack(self, m):
2022-12-31 23:06:35 +08:00
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
m.cond_stage_model = m.cond_stage_model.wrapped
elif type(m.cond_stage_model) == sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords:
m.cond_stage_model = m.cond_stage_model.wrapped
2022-11-26 21:10:46 +08:00
model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
if type(model_embeddings.token_embedding) == EmbeddingsWithFixes:
model_embeddings.token_embedding = model_embeddings.token_embedding.wrapped
elif type(m.cond_stage_model) == sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords:
m.cond_stage_model.wrapped.model.token_embedding = m.cond_stage_model.wrapped.model.token_embedding.wrapped
m.cond_stage_model = m.cond_stage_model.wrapped
undo_optimizations()
undo_weighted_forward(m)
2022-11-18 18:22:55 +08:00
self.apply_circular(False)
self.layers = None
self.clip = None
def apply_circular(self, enable):
if self.circular_enabled == enable:
return
self.circular_enabled = enable
for layer in [layer for layer in self.layers if type(layer) == torch.nn.Conv2d]:
layer.padding_mode = 'circular' if enable else 'zeros'
def clear_comments(self):
self.comments = []
2023-01-07 06:45:28 +08:00
def get_prompt_lengths(self, text):
_, token_count = self.clip.process_texts([text])
2023-01-07 06:45:28 +08:00
return token_count, self.clip.get_target_prompt_token_count(token_count)
class EmbeddingsWithFixes(torch.nn.Module):
def __init__(self, wrapped, embeddings):
super().__init__()
self.wrapped = wrapped
self.embeddings = embeddings
def forward(self, input_ids):
batch_fixes = self.embeddings.fixes
self.embeddings.fixes = None
inputs_embeds = self.wrapped(input_ids)
if batch_fixes is None or len(batch_fixes) == 0 or max([len(x) for x in batch_fixes]) == 0:
return inputs_embeds
vecs = []
for fixes, tensor in zip(batch_fixes, inputs_embeds):
for offset, embedding in fixes:
emb = devices.cond_cast_unet(embedding.vec)
emb_len = min(tensor.shape[0] - offset - 1, emb.shape[0])
tensor = torch.cat([tensor[0:offset + 1], emb[0:emb_len], tensor[offset + 1 + emb_len:]])
vecs.append(tensor)
return torch.stack(vecs)
def add_circular_option_to_conv_2d():
conv2d_constructor = torch.nn.Conv2d.__init__
def conv2d_constructor_circular(self, *args, **kwargs):
return conv2d_constructor(self, *args, padding_mode='circular', **kwargs)
torch.nn.Conv2d.__init__ = conv2d_constructor_circular
model_hijack = StableDiffusionModelHijack()
def register_buffer(self, name, attr):
"""
Fix register buffer bug for Mac OS.
"""
if type(attr) == torch.Tensor:
if attr.device != devices.device:
attr = attr.to(device=devices.device, dtype=(torch.float32 if devices.device.type == 'mps' else None))
setattr(self, name, attr)
ldm.models.diffusion.ddim.DDIMSampler.register_buffer = register_buffer
ldm.models.diffusion.plms.PLMSSampler.register_buffer = register_buffer