stable-diffusion-webui/modules/hypernetwork.py

89 lines
2.5 KiB
Python
Raw Normal View History

2022-10-07 15:17:52 +08:00
import glob
import os
import sys
import traceback
2022-10-07 15:17:52 +08:00
import torch
from ldm.util import default
from modules import devices, shared
import torch
from torch import einsum
from einops import rearrange, repeat
2022-10-07 15:17:52 +08:00
class HypernetworkModule(torch.nn.Module):
def __init__(self, dim, state_dict):
super().__init__()
self.linear1 = torch.nn.Linear(dim, dim * 2)
self.linear2 = torch.nn.Linear(dim * 2, dim)
self.load_state_dict(state_dict, strict=True)
self.to(devices.device)
def forward(self, x):
return x + (self.linear2(self.linear1(x)))
class Hypernetwork:
filename = None
name = None
def __init__(self, filename):
self.filename = filename
self.name = os.path.splitext(os.path.basename(filename))[0]
self.layers = {}
state_dict = torch.load(filename, map_location='cpu')
for size, sd in state_dict.items():
self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1]))
def load_hypernetworks(path):
res = {}
for filename in glob.iglob(path + '**/*.pt', recursive=True):
try:
hn = Hypernetwork(filename)
res[hn.name] = hn
except Exception:
print(f"Error loading hypernetwork {filename}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
2022-10-07 15:17:52 +08:00
return res
def attention_CrossAttention_forward(self, x, context=None, mask=None):
h = self.heads
q = self.to_q(x)
context = default(context, x)
2022-10-07 15:17:52 +08:00
hypernetwork = shared.selected_hypernetwork()
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
if hypernetwork_layers is not None:
k = self.to_k(hypernetwork_layers[0](context))
v = self.to_v(hypernetwork_layers[1](context))
2022-10-07 15:17:52 +08:00
else:
k = self.to_k(context)
v = self.to_v(context)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
if mask is not None:
mask = rearrange(mask, 'b ... -> b (...)')
max_neg_value = -torch.finfo(sim.dtype).max
mask = repeat(mask, 'b j -> (b h) () j', h=h)
sim.masked_fill_(~mask, max_neg_value)
# attention, what we cannot get enough of
attn = sim.softmax(dim=-1)
out = einsum('b i j, b j d -> b i d', attn, v)
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
return self.to_out(out)