2023-12-27 17:04:33 +08:00
|
|
|
import logging
|
|
|
|
from typing import Callable
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
import tqdm
|
|
|
|
from PIL import Image
|
|
|
|
|
2024-01-29 18:06:50 +08:00
|
|
|
from modules import devices, images, shared, torch_utils
|
2023-12-27 17:04:33 +08:00
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
2023-12-31 22:11:18 +08:00
|
|
|
def pil_image_to_torch_bgr(img: Image.Image) -> torch.Tensor:
|
|
|
|
img = np.array(img.convert("RGB"))
|
|
|
|
img = img[:, :, ::-1] # flip RGB to BGR
|
|
|
|
img = np.transpose(img, (2, 0, 1)) # HWC to CHW
|
|
|
|
img = np.ascontiguousarray(img) / 255 # Rescale to [0, 1]
|
|
|
|
return torch.from_numpy(img)
|
|
|
|
|
|
|
|
|
|
|
|
def torch_bgr_to_pil_image(tensor: torch.Tensor) -> Image.Image:
|
|
|
|
if tensor.ndim == 4:
|
|
|
|
# If we're given a tensor with a batch dimension, squeeze it out
|
|
|
|
# (but only if it's a batch of size 1).
|
|
|
|
if tensor.shape[0] != 1:
|
|
|
|
raise ValueError(f"{tensor.shape} does not describe a BCHW tensor")
|
|
|
|
tensor = tensor.squeeze(0)
|
|
|
|
assert tensor.ndim == 3, f"{tensor.shape} does not describe a CHW tensor"
|
|
|
|
# TODO: is `tensor.float().cpu()...numpy()` the most efficient idiom?
|
|
|
|
arr = tensor.float().cpu().clamp_(0, 1).numpy() # clamp
|
|
|
|
arr = 255.0 * np.moveaxis(arr, 0, 2) # CHW to HWC, rescale
|
2024-01-02 23:14:05 +08:00
|
|
|
arr = arr.round().astype(np.uint8)
|
2023-12-31 22:11:18 +08:00
|
|
|
arr = arr[:, :, ::-1] # flip BGR to RGB
|
|
|
|
return Image.fromarray(arr, "RGB")
|
|
|
|
|
|
|
|
|
|
|
|
def upscale_pil_patch(model, img: Image.Image) -> Image.Image:
|
|
|
|
"""
|
|
|
|
Upscale a given PIL image using the given model.
|
|
|
|
"""
|
2024-01-01 03:38:30 +08:00
|
|
|
param = torch_utils.get_param(model)
|
2023-12-31 03:41:53 +08:00
|
|
|
|
2023-12-27 17:04:33 +08:00
|
|
|
with torch.no_grad():
|
2023-12-31 22:11:18 +08:00
|
|
|
tensor = pil_image_to_torch_bgr(img).unsqueeze(0) # add batch dimension
|
|
|
|
tensor = tensor.to(device=param.device, dtype=param.dtype)
|
2024-01-29 18:06:50 +08:00
|
|
|
with devices.without_autocast():
|
|
|
|
return torch_bgr_to_pil_image(model(tensor))
|
2023-12-27 17:04:33 +08:00
|
|
|
|
|
|
|
|
|
|
|
def upscale_with_model(
|
|
|
|
model: Callable[[torch.Tensor], torch.Tensor],
|
|
|
|
img: Image.Image,
|
|
|
|
*,
|
|
|
|
tile_size: int,
|
|
|
|
tile_overlap: int = 0,
|
|
|
|
desc="tiled upscale",
|
|
|
|
) -> Image.Image:
|
|
|
|
if tile_size <= 0:
|
|
|
|
logger.debug("Upscaling %s without tiling", img)
|
2023-12-31 22:11:18 +08:00
|
|
|
output = upscale_pil_patch(model, img)
|
2023-12-27 17:04:33 +08:00
|
|
|
logger.debug("=> %s", output)
|
|
|
|
return output
|
|
|
|
|
|
|
|
grid = images.split_grid(img, tile_size, tile_size, tile_overlap)
|
|
|
|
newtiles = []
|
|
|
|
|
2024-01-02 11:47:26 +08:00
|
|
|
with tqdm.tqdm(total=grid.tile_count, desc=desc, disable=not shared.opts.enable_upscale_progressbar) as p:
|
2023-12-27 17:04:33 +08:00
|
|
|
for y, h, row in grid.tiles:
|
|
|
|
newrow = []
|
|
|
|
for x, w, tile in row:
|
2024-03-26 18:53:38 +08:00
|
|
|
if shared.state.interrupted:
|
|
|
|
return img
|
2023-12-31 22:11:18 +08:00
|
|
|
output = upscale_pil_patch(model, tile)
|
2023-12-27 17:04:33 +08:00
|
|
|
scale_factor = output.width // tile.width
|
|
|
|
newrow.append([x * scale_factor, w * scale_factor, output])
|
|
|
|
p.update(1)
|
|
|
|
newtiles.append([y * scale_factor, h * scale_factor, newrow])
|
|
|
|
|
|
|
|
newgrid = images.Grid(
|
|
|
|
newtiles,
|
|
|
|
tile_w=grid.tile_w * scale_factor,
|
|
|
|
tile_h=grid.tile_h * scale_factor,
|
|
|
|
image_w=grid.image_w * scale_factor,
|
|
|
|
image_h=grid.image_h * scale_factor,
|
|
|
|
overlap=grid.overlap * scale_factor,
|
|
|
|
)
|
|
|
|
return images.combine_grid(newgrid)
|
2023-12-31 04:53:49 +08:00
|
|
|
|
|
|
|
|
|
|
|
def tiled_upscale_2(
|
2023-12-31 22:11:18 +08:00
|
|
|
img: torch.Tensor,
|
2023-12-31 04:53:49 +08:00
|
|
|
model,
|
|
|
|
*,
|
|
|
|
tile_size: int,
|
|
|
|
tile_overlap: int,
|
|
|
|
scale: int,
|
2024-01-04 04:39:12 +08:00
|
|
|
device: torch.device,
|
2023-12-31 04:53:49 +08:00
|
|
|
desc="Tiled upscale",
|
|
|
|
):
|
|
|
|
# Alternative implementation of `upscale_with_model` originally used by
|
|
|
|
# SwinIR and ScuNET. It differs from `upscale_with_model` in that tiling and
|
|
|
|
# weighting is done in PyTorch space, as opposed to `images.Grid` doing it in
|
|
|
|
# Pillow space without weighting.
|
2023-12-31 22:11:18 +08:00
|
|
|
|
2023-12-31 04:53:49 +08:00
|
|
|
b, c, h, w = img.size()
|
|
|
|
tile_size = min(tile_size, h, w)
|
|
|
|
|
|
|
|
if tile_size <= 0:
|
|
|
|
logger.debug("Upscaling %s without tiling", img.shape)
|
|
|
|
return model(img)
|
|
|
|
|
|
|
|
stride = tile_size - tile_overlap
|
|
|
|
h_idx_list = list(range(0, h - tile_size, stride)) + [h - tile_size]
|
|
|
|
w_idx_list = list(range(0, w - tile_size, stride)) + [w - tile_size]
|
|
|
|
result = torch.zeros(
|
|
|
|
b,
|
|
|
|
c,
|
|
|
|
h * scale,
|
|
|
|
w * scale,
|
|
|
|
device=device,
|
2023-12-31 22:11:18 +08:00
|
|
|
dtype=img.dtype,
|
|
|
|
)
|
2023-12-31 04:53:49 +08:00
|
|
|
weights = torch.zeros_like(result)
|
|
|
|
logger.debug("Upscaling %s to %s with tiles", img.shape, result.shape)
|
2024-01-02 11:47:26 +08:00
|
|
|
with tqdm.tqdm(total=len(h_idx_list) * len(w_idx_list), desc=desc, disable=not shared.opts.enable_upscale_progressbar) as pbar:
|
2023-12-31 04:53:49 +08:00
|
|
|
for h_idx in h_idx_list:
|
|
|
|
if shared.state.interrupted or shared.state.skipped:
|
|
|
|
break
|
|
|
|
|
|
|
|
for w_idx in w_idx_list:
|
|
|
|
if shared.state.interrupted or shared.state.skipped:
|
|
|
|
break
|
|
|
|
|
2023-12-31 22:11:18 +08:00
|
|
|
# Only move this patch to the device if it's not already there.
|
2023-12-31 04:53:49 +08:00
|
|
|
in_patch = img[
|
|
|
|
...,
|
|
|
|
h_idx : h_idx + tile_size,
|
|
|
|
w_idx : w_idx + tile_size,
|
2023-12-31 22:11:18 +08:00
|
|
|
].to(device=device)
|
|
|
|
|
2023-12-31 04:53:49 +08:00
|
|
|
out_patch = model(in_patch)
|
|
|
|
|
|
|
|
result[
|
|
|
|
...,
|
|
|
|
h_idx * scale : (h_idx + tile_size) * scale,
|
|
|
|
w_idx * scale : (w_idx + tile_size) * scale,
|
|
|
|
].add_(out_patch)
|
|
|
|
|
|
|
|
out_patch_mask = torch.ones_like(out_patch)
|
|
|
|
|
|
|
|
weights[
|
|
|
|
...,
|
|
|
|
h_idx * scale : (h_idx + tile_size) * scale,
|
|
|
|
w_idx * scale : (w_idx + tile_size) * scale,
|
|
|
|
].add_(out_patch_mask)
|
|
|
|
|
|
|
|
pbar.update(1)
|
|
|
|
|
|
|
|
output = result.div_(weights)
|
|
|
|
|
|
|
|
return output
|
2023-12-31 22:11:18 +08:00
|
|
|
|
|
|
|
|
|
|
|
def upscale_2(
|
|
|
|
img: Image.Image,
|
|
|
|
model,
|
|
|
|
*,
|
|
|
|
tile_size: int,
|
|
|
|
tile_overlap: int,
|
|
|
|
scale: int,
|
|
|
|
desc: str,
|
|
|
|
):
|
|
|
|
"""
|
|
|
|
Convenience wrapper around `tiled_upscale_2` that handles PIL images.
|
|
|
|
"""
|
2024-01-04 04:39:12 +08:00
|
|
|
param = torch_utils.get_param(model)
|
|
|
|
tensor = pil_image_to_torch_bgr(img).to(dtype=param.dtype).unsqueeze(0) # add batch dimension
|
2023-12-31 22:11:18 +08:00
|
|
|
|
|
|
|
with torch.no_grad():
|
|
|
|
output = tiled_upscale_2(
|
|
|
|
tensor,
|
|
|
|
model,
|
|
|
|
tile_size=tile_size,
|
|
|
|
tile_overlap=tile_overlap,
|
|
|
|
scale=scale,
|
|
|
|
desc=desc,
|
2024-01-04 04:39:12 +08:00
|
|
|
device=param.device,
|
2023-12-31 22:11:18 +08:00
|
|
|
)
|
|
|
|
return torch_bgr_to_pil_image(output)
|