stable-diffusion-webui/modules/codeformer_model.py

142 lines
4.9 KiB
Python
Raw Normal View History

2022-09-07 17:32:28 +08:00
import os
import cv2
2022-09-07 17:32:28 +08:00
import torch
2022-09-26 23:27:18 +08:00
import modules.face_restoration
import modules.shared
from modules import shared, devices, modelloader, errors
2023-01-26 01:00:09 +08:00
from modules.paths import models_path
2022-09-07 17:32:28 +08:00
2022-09-26 22:29:50 +08:00
model_dir = "Codeformer"
model_path = os.path.join(models_path, model_dir)
model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth'
2022-09-07 17:32:28 +08:00
2022-09-07 18:35:02 +08:00
codeformer = None
2022-09-07 17:32:28 +08:00
2022-09-26 22:29:50 +08:00
class FaceRestorerCodeFormer(modules.face_restoration.FaceRestoration):
def name(self):
return "CodeFormer"
def __init__(self, dirname):
self.net = None
self.face_helper = None
self.cmd_dir = dirname
def create_models(self):
from facexlib.detection import retinaface
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
if self.net is not None and self.face_helper is not None:
self.net.to(devices.device_codeformer)
return self.net, self.face_helper
model_paths = modelloader.load_models(
model_path,
model_url,
self.cmd_dir,
download_name='codeformer-v0.1.0.pth',
ext_filter=['.pth'],
)
if len(model_paths) != 0:
ckpt_path = model_paths[0]
else:
print("Unable to load codeformer model.")
return None, None
net = modelloader.load_spandrel_model(ckpt_path, device=devices.device_codeformer)
if hasattr(retinaface, 'device'):
retinaface.device = devices.device_codeformer
face_helper = FaceRestoreHelper(
upscale_factor=1,
face_size=512,
crop_ratio=(1, 1),
det_model='retinaface_resnet50',
save_ext='png',
use_parse=True,
device=devices.device_codeformer,
)
self.net = net
self.face_helper = face_helper
def send_model_to(self, device):
self.net.to(device)
self.face_helper.face_det.to(device)
self.face_helper.face_parse.to(device)
def restore(self, np_image, w=None):
2022-09-07 17:32:28 +08:00
from torchvision.transforms.functional import normalize
2023-05-10 13:43:42 +08:00
from basicsr.utils import img2tensor, tensor2img
np_image = np_image[:, :, ::-1]
2022-09-07 17:32:28 +08:00
original_resolution = np_image.shape[0:2]
2022-09-07 17:32:28 +08:00
self.create_models()
if self.net is None or self.face_helper is None:
return np_image
2022-09-07 17:32:28 +08:00
self.send_model_to(devices.device_codeformer)
2022-09-07 17:32:28 +08:00
self.face_helper.clean_all()
self.face_helper.read_image(np_image)
self.face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5)
self.face_helper.align_warp_face()
for cropped_face in self.face_helper.cropped_faces:
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
cropped_face_t = cropped_face_t.unsqueeze(0).to(devices.device_codeformer)
2022-09-07 17:32:28 +08:00
try:
with torch.no_grad():
res = self.net(cropped_face_t, w=w if w is not None else shared.opts.code_former_weight, adain=True)
if isinstance(res, tuple):
output = res[0]
else:
output = res
if not isinstance(res, torch.Tensor):
raise TypeError(f"Expected torch.Tensor, got {type(res)}")
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
del output
devices.torch_gc()
except Exception:
errors.report('Failed inference for CodeFormer', exc_info=True)
restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))
restored_face = restored_face.astype('uint8')
self.face_helper.add_restored_face(restored_face)
2022-09-26 22:29:50 +08:00
self.face_helper.get_inverse_affine(None)
restored_img = self.face_helper.paste_faces_to_input_image()
restored_img = restored_img[:, :, ::-1]
2022-09-07 17:32:28 +08:00
if original_resolution != restored_img.shape[0:2]:
restored_img = cv2.resize(
restored_img,
(0, 0),
fx=original_resolution[1]/restored_img.shape[1],
fy=original_resolution[0]/restored_img.shape[0],
interpolation=cv2.INTER_LINEAR,
)
2022-09-07 17:32:28 +08:00
self.face_helper.clean_all()
2022-09-07 17:32:28 +08:00
if shared.opts.face_restoration_unload:
self.send_model_to(devices.cpu)
2022-09-07 17:32:28 +08:00
return restored_img
2022-09-07 17:32:28 +08:00
def setup_model(dirname):
os.makedirs(model_path, exist_ok=True)
try:
2022-09-07 18:35:02 +08:00
global codeformer
2022-09-26 22:29:50 +08:00
codeformer = FaceRestorerCodeFormer(dirname)
2022-09-07 18:35:02 +08:00
shared.face_restorers.append(codeformer)
2022-09-07 17:32:28 +08:00
except Exception:
errors.report("Error setting up CodeFormer", exc_info=True)