stable-diffusion-webui/modules/masking.py

97 lines
3.7 KiB
Python
Raw Normal View History

from PIL import Image, ImageFilter, ImageOps
2024-04-21 18:34:11 +08:00
def get_crop_region_v2(mask, pad=0):
"""
Finds a rectangular region that contains all masked ares in a mask.
Returns None if mask is completely black mask (all 0)
Parameters:
mask: PIL.Image.Image L mode or numpy 1d array
pad: int number of pixels that the region will be extended on all sides
Returns: (x1, y1, x2, y2) | None
Introduced post 1.9.0
"""
mask = mask if isinstance(mask, Image.Image) else Image.fromarray(mask)
if box := mask.getbbox():
2024-01-21 06:20:52 +08:00
x1, y1, x2, y2 = box
return (max(x1 - pad, 0), max(y1 - pad, 0), min(x2 + pad, mask.size[0]), min(y2 + pad, mask.size[1])) if pad else box
2024-04-21 18:34:11 +08:00
def get_crop_region(mask, pad=0):
"""
Same function as get_crop_region_v2 but handles completely black mask (all 0) differently
when mask all black still return coordinates but the coordinates may be invalid ie x2>x1 or y2>y1
Notes: it is possible for the coordinates to be "valid" again if pad size is sufficiently large
(mask_size.x-pad, mask_size.y-pad, pad, pad)
Extension developer should use get_crop_region_v2 instead unless for compatibility considerations.
"""
mask = mask if isinstance(mask, Image.Image) else Image.fromarray(mask)
if box := get_crop_region_v2(mask, pad):
return box
x1, y1 = mask.size
x2 = y2 = 0
return max(x1 - pad, 0), max(y1 - pad, 0), min(x2 + pad, mask.size[0]), min(y2 + pad, mask.size[1])
def expand_crop_region(crop_region, processing_width, processing_height, image_width, image_height):
"""expands crop region get_crop_region() to match the ratio of the image the region will processed in; returns expanded region
for example, if user drew mask in a 128x32 region, and the dimensions for processing are 512x512, the region will be expanded to 128x128."""
x1, y1, x2, y2 = crop_region
ratio_crop_region = (x2 - x1) / (y2 - y1)
ratio_processing = processing_width / processing_height
if ratio_crop_region > ratio_processing:
desired_height = (x2 - x1) / ratio_processing
desired_height_diff = int(desired_height - (y2-y1))
y1 -= desired_height_diff//2
y2 += desired_height_diff - desired_height_diff//2
if y2 >= image_height:
diff = y2 - image_height
y2 -= diff
y1 -= diff
if y1 < 0:
y2 -= y1
y1 -= y1
if y2 >= image_height:
y2 = image_height
else:
desired_width = (y2 - y1) * ratio_processing
desired_width_diff = int(desired_width - (x2-x1))
x1 -= desired_width_diff//2
x2 += desired_width_diff - desired_width_diff//2
if x2 >= image_width:
diff = x2 - image_width
x2 -= diff
x1 -= diff
if x1 < 0:
x2 -= x1
x1 -= x1
if x2 >= image_width:
x2 = image_width
return x1, y1, x2, y2
def fill(image, mask):
"""fills masked regions with colors from image using blur. Not extremely effective."""
image_mod = Image.new('RGBA', (image.width, image.height))
image_masked = Image.new('RGBa', (image.width, image.height))
image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(mask.convert('L')))
image_masked = image_masked.convert('RGBa')
for radius, repeats in [(256, 1), (64, 1), (16, 2), (4, 4), (2, 2), (0, 1)]:
blurred = image_masked.filter(ImageFilter.GaussianBlur(radius)).convert('RGBA')
for _ in range(repeats):
image_mod.alpha_composite(blurred)
return image_mod.convert("RGB")