mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-06 07:05:06 +08:00
334 lines
14 KiB
Python
334 lines
14 KiB
Python
|
"""
|
||
|
Hypertile module for splitting attention layers in SD-1.5 U-Net and SD-1.5 VAE
|
||
|
Warn : The patch works well only if the input image has a width and height that are multiples of 128
|
||
|
Author : @tfernd Github : https://github.com/tfernd/HyperTile
|
||
|
"""
|
||
|
|
||
|
from __future__ import annotations
|
||
|
from typing import Callable
|
||
|
from typing_extensions import Literal
|
||
|
|
||
|
import logging
|
||
|
from functools import wraps, cache
|
||
|
from contextlib import contextmanager
|
||
|
|
||
|
import math
|
||
|
import torch.nn as nn
|
||
|
import random
|
||
|
|
||
|
from einops import rearrange
|
||
|
|
||
|
# TODO add SD-XL layers
|
||
|
DEPTH_LAYERS = {
|
||
|
0: [
|
||
|
# SD 1.5 U-Net (diffusers)
|
||
|
"down_blocks.0.attentions.0.transformer_blocks.0.attn1",
|
||
|
"down_blocks.0.attentions.1.transformer_blocks.0.attn1",
|
||
|
"up_blocks.3.attentions.0.transformer_blocks.0.attn1",
|
||
|
"up_blocks.3.attentions.1.transformer_blocks.0.attn1",
|
||
|
"up_blocks.3.attentions.2.transformer_blocks.0.attn1",
|
||
|
# SD 1.5 U-Net (ldm)
|
||
|
"input_blocks.1.1.transformer_blocks.0.attn1",
|
||
|
"input_blocks.2.1.transformer_blocks.0.attn1",
|
||
|
"output_blocks.9.1.transformer_blocks.0.attn1",
|
||
|
"output_blocks.10.1.transformer_blocks.0.attn1",
|
||
|
"output_blocks.11.1.transformer_blocks.0.attn1",
|
||
|
# SD 1.5 VAE
|
||
|
"decoder.mid_block.attentions.0",
|
||
|
],
|
||
|
1: [
|
||
|
# SD 1.5 U-Net (diffusers)
|
||
|
"down_blocks.1.attentions.0.transformer_blocks.0.attn1",
|
||
|
"down_blocks.1.attentions.1.transformer_blocks.0.attn1",
|
||
|
"up_blocks.2.attentions.0.transformer_blocks.0.attn1",
|
||
|
"up_blocks.2.attentions.1.transformer_blocks.0.attn1",
|
||
|
"up_blocks.2.attentions.2.transformer_blocks.0.attn1",
|
||
|
# SD 1.5 U-Net (ldm)
|
||
|
"input_blocks.4.1.transformer_blocks.0.attn1",
|
||
|
"input_blocks.5.1.transformer_blocks.0.attn1",
|
||
|
"output_blocks.6.1.transformer_blocks.0.attn1",
|
||
|
"output_blocks.7.1.transformer_blocks.0.attn1",
|
||
|
"output_blocks.8.1.transformer_blocks.0.attn1",
|
||
|
],
|
||
|
2: [
|
||
|
# SD 1.5 U-Net (diffusers)
|
||
|
"down_blocks.2.attentions.0.transformer_blocks.0.attn1",
|
||
|
"down_blocks.2.attentions.1.transformer_blocks.0.attn1",
|
||
|
"up_blocks.1.attentions.0.transformer_blocks.0.attn1",
|
||
|
"up_blocks.1.attentions.1.transformer_blocks.0.attn1",
|
||
|
"up_blocks.1.attentions.2.transformer_blocks.0.attn1",
|
||
|
# SD 1.5 U-Net (ldm)
|
||
|
"input_blocks.7.1.transformer_blocks.0.attn1",
|
||
|
"input_blocks.8.1.transformer_blocks.0.attn1",
|
||
|
"output_blocks.3.1.transformer_blocks.0.attn1",
|
||
|
"output_blocks.4.1.transformer_blocks.0.attn1",
|
||
|
"output_blocks.5.1.transformer_blocks.0.attn1",
|
||
|
],
|
||
|
3: [
|
||
|
# SD 1.5 U-Net (diffusers)
|
||
|
"mid_block.attentions.0.transformer_blocks.0.attn1",
|
||
|
# SD 1.5 U-Net (ldm)
|
||
|
"middle_block.1.transformer_blocks.0.attn1",
|
||
|
],
|
||
|
}
|
||
|
# XL layers, thanks for GitHub@gel-crabs for the help
|
||
|
DEPTH_LAYERS_XL = {
|
||
|
0: [
|
||
|
# SD 1.5 U-Net (diffusers)
|
||
|
"down_blocks.0.attentions.0.transformer_blocks.0.attn1",
|
||
|
"down_blocks.0.attentions.1.transformer_blocks.0.attn1",
|
||
|
"up_blocks.3.attentions.0.transformer_blocks.0.attn1",
|
||
|
"up_blocks.3.attentions.1.transformer_blocks.0.attn1",
|
||
|
"up_blocks.3.attentions.2.transformer_blocks.0.attn1",
|
||
|
# SD 1.5 U-Net (ldm)
|
||
|
"input_blocks.4.1.transformer_blocks.0.attn1",
|
||
|
"input_blocks.5.1.transformer_blocks.0.attn1",
|
||
|
"output_blocks.3.1.transformer_blocks.0.attn1",
|
||
|
"output_blocks.4.1.transformer_blocks.0.attn1",
|
||
|
"output_blocks.5.1.transformer_blocks.0.attn1",
|
||
|
# SD 1.5 VAE
|
||
|
"decoder.mid_block.attentions.0",
|
||
|
"decoder.mid.attn_1",
|
||
|
],
|
||
|
1: [
|
||
|
# SD 1.5 U-Net (diffusers)
|
||
|
#"down_blocks.1.attentions.0.transformer_blocks.0.attn1",
|
||
|
#"down_blocks.1.attentions.1.transformer_blocks.0.attn1",
|
||
|
#"up_blocks.2.attentions.0.transformer_blocks.0.attn1",
|
||
|
#"up_blocks.2.attentions.1.transformer_blocks.0.attn1",
|
||
|
#"up_blocks.2.attentions.2.transformer_blocks.0.attn1",
|
||
|
# SD 1.5 U-Net (ldm)
|
||
|
"input_blocks.4.1.transformer_blocks.1.attn1",
|
||
|
"input_blocks.5.1.transformer_blocks.1.attn1",
|
||
|
"output_blocks.3.1.transformer_blocks.1.attn1",
|
||
|
"output_blocks.4.1.transformer_blocks.1.attn1",
|
||
|
"output_blocks.5.1.transformer_blocks.1.attn1",
|
||
|
"input_blocks.7.1.transformer_blocks.0.attn1",
|
||
|
"input_blocks.8.1.transformer_blocks.0.attn1",
|
||
|
"output_blocks.0.1.transformer_blocks.0.attn1",
|
||
|
"output_blocks.1.1.transformer_blocks.0.attn1",
|
||
|
"output_blocks.2.1.transformer_blocks.0.attn1",
|
||
|
"input_blocks.7.1.transformer_blocks.1.attn1",
|
||
|
"input_blocks.8.1.transformer_blocks.1.attn1",
|
||
|
"output_blocks.0.1.transformer_blocks.1.attn1",
|
||
|
"output_blocks.1.1.transformer_blocks.1.attn1",
|
||
|
"output_blocks.2.1.transformer_blocks.1.attn1",
|
||
|
"input_blocks.7.1.transformer_blocks.2.attn1",
|
||
|
"input_blocks.8.1.transformer_blocks.2.attn1",
|
||
|
"output_blocks.0.1.transformer_blocks.2.attn1",
|
||
|
"output_blocks.1.1.transformer_blocks.2.attn1",
|
||
|
"output_blocks.2.1.transformer_blocks.2.attn1",
|
||
|
"input_blocks.7.1.transformer_blocks.3.attn1",
|
||
|
"input_blocks.8.1.transformer_blocks.3.attn1",
|
||
|
"output_blocks.0.1.transformer_blocks.3.attn1",
|
||
|
"output_blocks.1.1.transformer_blocks.3.attn1",
|
||
|
"output_blocks.2.1.transformer_blocks.3.attn1",
|
||
|
"input_blocks.7.1.transformer_blocks.4.attn1",
|
||
|
"input_blocks.8.1.transformer_blocks.4.attn1",
|
||
|
"output_blocks.0.1.transformer_blocks.4.attn1",
|
||
|
"output_blocks.1.1.transformer_blocks.4.attn1",
|
||
|
"output_blocks.2.1.transformer_blocks.4.attn1",
|
||
|
"input_blocks.7.1.transformer_blocks.5.attn1",
|
||
|
"input_blocks.8.1.transformer_blocks.5.attn1",
|
||
|
"output_blocks.0.1.transformer_blocks.5.attn1",
|
||
|
"output_blocks.1.1.transformer_blocks.5.attn1",
|
||
|
"output_blocks.2.1.transformer_blocks.5.attn1",
|
||
|
"input_blocks.7.1.transformer_blocks.6.attn1",
|
||
|
"input_blocks.8.1.transformer_blocks.6.attn1",
|
||
|
"output_blocks.0.1.transformer_blocks.6.attn1",
|
||
|
"output_blocks.1.1.transformer_blocks.6.attn1",
|
||
|
"output_blocks.2.1.transformer_blocks.6.attn1",
|
||
|
"input_blocks.7.1.transformer_blocks.7.attn1",
|
||
|
"input_blocks.8.1.transformer_blocks.7.attn1",
|
||
|
"output_blocks.0.1.transformer_blocks.7.attn1",
|
||
|
"output_blocks.1.1.transformer_blocks.7.attn1",
|
||
|
"output_blocks.2.1.transformer_blocks.7.attn1",
|
||
|
"input_blocks.7.1.transformer_blocks.8.attn1",
|
||
|
"input_blocks.8.1.transformer_blocks.8.attn1",
|
||
|
"output_blocks.0.1.transformer_blocks.8.attn1",
|
||
|
"output_blocks.1.1.transformer_blocks.8.attn1",
|
||
|
"output_blocks.2.1.transformer_blocks.8.attn1",
|
||
|
"input_blocks.7.1.transformer_blocks.9.attn1",
|
||
|
"input_blocks.8.1.transformer_blocks.9.attn1",
|
||
|
"output_blocks.0.1.transformer_blocks.9.attn1",
|
||
|
"output_blocks.1.1.transformer_blocks.9.attn1",
|
||
|
"output_blocks.2.1.transformer_blocks.9.attn1",
|
||
|
],
|
||
|
2: [
|
||
|
# SD 1.5 U-Net (diffusers)
|
||
|
"mid_block.attentions.0.transformer_blocks.0.attn1",
|
||
|
# SD 1.5 U-Net (ldm)
|
||
|
"middle_block.1.transformer_blocks.0.attn1",
|
||
|
"middle_block.1.transformer_blocks.1.attn1",
|
||
|
"middle_block.1.transformer_blocks.2.attn1",
|
||
|
"middle_block.1.transformer_blocks.3.attn1",
|
||
|
"middle_block.1.transformer_blocks.4.attn1",
|
||
|
"middle_block.1.transformer_blocks.5.attn1",
|
||
|
"middle_block.1.transformer_blocks.6.attn1",
|
||
|
"middle_block.1.transformer_blocks.7.attn1",
|
||
|
"middle_block.1.transformer_blocks.8.attn1",
|
||
|
"middle_block.1.transformer_blocks.9.attn1",
|
||
|
],
|
||
|
}
|
||
|
|
||
|
|
||
|
RNG_INSTANCE = random.Random()
|
||
|
|
||
|
def random_divisor(value: int, min_value: int, /, max_options: int = 1) -> int:
|
||
|
"""
|
||
|
Returns a random divisor of value that
|
||
|
x * min_value <= value
|
||
|
if max_options is 1, the behavior is deterministic
|
||
|
"""
|
||
|
min_value = min(min_value, value)
|
||
|
|
||
|
# All big divisors of value (inclusive)
|
||
|
divisors = [i for i in range(min_value, value + 1) if value % i == 0] # divisors in small -> big order
|
||
|
|
||
|
ns = [value // i for i in divisors[:max_options]] # has at least 1 element # big -> small order
|
||
|
|
||
|
idx = RNG_INSTANCE.randint(0, len(ns) - 1)
|
||
|
|
||
|
return ns[idx]
|
||
|
|
||
|
def set_hypertile_seed(seed: int) -> None:
|
||
|
RNG_INSTANCE.seed(seed)
|
||
|
|
||
|
def largest_tile_size_available(width:int, height:int) -> int:
|
||
|
"""
|
||
|
Calculates the largest tile size available for a given width and height
|
||
|
Tile size is always a power of 2
|
||
|
"""
|
||
|
gcd = math.gcd(width, height)
|
||
|
largest_tile_size_available = 1
|
||
|
while gcd % (largest_tile_size_available * 2) == 0:
|
||
|
largest_tile_size_available *= 2
|
||
|
return largest_tile_size_available
|
||
|
|
||
|
def iterative_closest_divisors(hw:int, aspect_ratio:float) -> tuple[int, int]:
|
||
|
"""
|
||
|
Finds h and w such that h*w = hw and h/w = aspect_ratio
|
||
|
We check all possible divisors of hw and return the closest to the aspect ratio
|
||
|
"""
|
||
|
divisors = [i for i in range(2, hw + 1) if hw % i == 0] # all divisors of hw
|
||
|
pairs = [(i, hw // i) for i in divisors] # all pairs of divisors of hw
|
||
|
ratios = [w/h for h, w in pairs] # all ratios of pairs of divisors of hw
|
||
|
closest_ratio = min(ratios, key=lambda x: abs(x - aspect_ratio)) # closest ratio to aspect_ratio
|
||
|
closest_pair = pairs[ratios.index(closest_ratio)] # closest pair of divisors to aspect_ratio
|
||
|
return closest_pair
|
||
|
|
||
|
@cache
|
||
|
def find_hw_candidates(hw:int, aspect_ratio:float) -> tuple[int, int]:
|
||
|
"""
|
||
|
Finds h and w such that h*w = hw and h/w = aspect_ratio
|
||
|
"""
|
||
|
h, w = round(math.sqrt(hw * aspect_ratio)), round(math.sqrt(hw / aspect_ratio))
|
||
|
# find h and w such that h*w = hw and h/w = aspect_ratio
|
||
|
if h * w != hw:
|
||
|
w_candidate = hw / h
|
||
|
# check if w is an integer
|
||
|
if not w_candidate.is_integer():
|
||
|
h_candidate = hw / w
|
||
|
# check if h is an integer
|
||
|
if not h_candidate.is_integer():
|
||
|
return iterative_closest_divisors(hw, aspect_ratio)
|
||
|
else:
|
||
|
h = int(h_candidate)
|
||
|
else:
|
||
|
w = int(w_candidate)
|
||
|
return h, w
|
||
|
|
||
|
@contextmanager
|
||
|
def split_attention(
|
||
|
layer: nn.Module,
|
||
|
/,
|
||
|
aspect_ratio: float, # width/height
|
||
|
tile_size: int = 128, # 128 for VAE
|
||
|
swap_size: int = 1, # 1 for VAE
|
||
|
*,
|
||
|
disable: bool = False,
|
||
|
max_depth: Literal[0, 1, 2, 3] = 0, # ! Try 0 or 1
|
||
|
scale_depth: bool = True, # scale the tile-size depending on the depth
|
||
|
is_sdxl: bool = False, # is the model SD-XL
|
||
|
):
|
||
|
# Hijacks AttnBlock from ldm and Attention from diffusers
|
||
|
|
||
|
if disable:
|
||
|
logging.info(f"Attention for {layer.__class__.__qualname__} not splitted")
|
||
|
yield
|
||
|
return
|
||
|
|
||
|
latent_tile_size = max(128, tile_size) // 8
|
||
|
|
||
|
def self_attn_forward(forward: Callable, depth: int, layer_name: str, module: nn.Module) -> Callable:
|
||
|
@wraps(forward)
|
||
|
def wrapper(*args, **kwargs):
|
||
|
x = args[0]
|
||
|
|
||
|
# VAE
|
||
|
if x.ndim == 4:
|
||
|
b, c, h, w = x.shape
|
||
|
|
||
|
nh = random_divisor(h, latent_tile_size, swap_size)
|
||
|
nw = random_divisor(w, latent_tile_size, swap_size)
|
||
|
|
||
|
if nh * nw > 1:
|
||
|
x = rearrange(x, "b c (nh h) (nw w) -> (b nh nw) c h w", nh=nh, nw=nw) # split into nh * nw tiles
|
||
|
|
||
|
out = forward(x, *args[1:], **kwargs)
|
||
|
|
||
|
if nh * nw > 1:
|
||
|
out = rearrange(out, "(b nh nw) c h w -> b c (nh h) (nw w)", nh=nh, nw=nw)
|
||
|
|
||
|
# U-Net
|
||
|
else:
|
||
|
hw: int = x.size(1)
|
||
|
h, w = find_hw_candidates(hw, aspect_ratio)
|
||
|
assert h * w == hw, f"Invalid aspect ratio {aspect_ratio} for input of shape {x.shape}, hw={hw}, h={h}, w={w}"
|
||
|
|
||
|
factor = 2**depth if scale_depth else 1
|
||
|
nh = random_divisor(h, latent_tile_size * factor, swap_size)
|
||
|
nw = random_divisor(w, latent_tile_size * factor, swap_size)
|
||
|
|
||
|
module._split_sizes_hypertile.append((nh, nw)) # type: ignore
|
||
|
|
||
|
if nh * nw > 1:
|
||
|
x = rearrange(x, "b (nh h nw w) c -> (b nh nw) (h w) c", h=h // nh, w=w // nw, nh=nh, nw=nw)
|
||
|
|
||
|
out = forward(x, *args[1:], **kwargs)
|
||
|
|
||
|
if nh * nw > 1:
|
||
|
out = rearrange(out, "(b nh nw) hw c -> b nh nw hw c", nh=nh, nw=nw)
|
||
|
out = rearrange(out, "b nh nw (h w) c -> b (nh h nw w) c", h=h // nh, w=w // nw)
|
||
|
|
||
|
return out
|
||
|
|
||
|
return wrapper
|
||
|
|
||
|
# Handle hijacking the forward method and recovering afterwards
|
||
|
try:
|
||
|
if is_sdxl:
|
||
|
layers = DEPTH_LAYERS_XL
|
||
|
else:
|
||
|
layers = DEPTH_LAYERS
|
||
|
for depth in range(max_depth + 1):
|
||
|
for layer_name, module in layer.named_modules():
|
||
|
if any(layer_name.endswith(try_name) for try_name in layers[depth]):
|
||
|
# print input shape for debugging
|
||
|
logging.debug(f"HyperTile hijacking attention layer at depth {depth}: {layer_name}")
|
||
|
# hijack
|
||
|
module._original_forward_hypertile = module.forward
|
||
|
module.forward = self_attn_forward(module.forward, depth, layer_name, module)
|
||
|
module._split_sizes_hypertile = []
|
||
|
yield
|
||
|
finally:
|
||
|
for layer_name, module in layer.named_modules():
|
||
|
# remove hijack
|
||
|
if hasattr(module, "_original_forward_hypertile"):
|
||
|
if module._split_sizes_hypertile:
|
||
|
logging.debug(f"layer {layer_name} splitted with ({module._split_sizes_hypertile})")
|
||
|
# recover
|
||
|
module.forward = module._original_forward_hypertile
|
||
|
del module._original_forward_hypertile
|
||
|
del module._split_sizes_hypertile
|