mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-22 14:20:10 +08:00
40 lines
1.3 KiB
Python
40 lines
1.3 KiB
Python
|
import torch
|
||
|
|
||
|
import lyco_helpers
|
||
|
import network
|
||
|
from modules import devices
|
||
|
|
||
|
|
||
|
class NetworkModuleLyco(network.NetworkModule):
|
||
|
def __init__(self, net: network.Network, weights: network.NetworkWeights):
|
||
|
super().__init__(net, weights)
|
||
|
|
||
|
if hasattr(self.sd_module, 'weight'):
|
||
|
self.shape = self.sd_module.weight.shape
|
||
|
|
||
|
self.dim = None
|
||
|
self.bias = weights.w.get("bias")
|
||
|
self.alpha = weights.w["alpha"].item() if "alpha" in weights.w else None
|
||
|
self.scale = weights.w["scale"].item() if "scale" in weights.w else None
|
||
|
|
||
|
def finalize_updown(self, updown, orig_weight, output_shape):
|
||
|
if self.bias is not None:
|
||
|
updown = updown.reshape(self.bias.shape)
|
||
|
updown += self.bias.to(orig_weight.device, dtype=orig_weight.dtype)
|
||
|
updown = updown.reshape(output_shape)
|
||
|
|
||
|
if len(output_shape) == 4:
|
||
|
updown = updown.reshape(output_shape)
|
||
|
|
||
|
if orig_weight.size().numel() == updown.size().numel():
|
||
|
updown = updown.reshape(orig_weight.shape)
|
||
|
|
||
|
scale = (
|
||
|
self.scale if self.scale is not None
|
||
|
else self.alpha / self.dim if self.dim is not None and self.alpha is not None
|
||
|
else 1.0
|
||
|
)
|
||
|
|
||
|
return updown * scale * self.network.multiplier
|
||
|
|