stable-diffusion-webui/extensions-builtin/Lora/network_lyco.py

40 lines
1.3 KiB
Python
Raw Normal View History

import torch
import lyco_helpers
import network
from modules import devices
class NetworkModuleLyco(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights):
super().__init__(net, weights)
if hasattr(self.sd_module, 'weight'):
self.shape = self.sd_module.weight.shape
self.dim = None
self.bias = weights.w.get("bias")
self.alpha = weights.w["alpha"].item() if "alpha" in weights.w else None
self.scale = weights.w["scale"].item() if "scale" in weights.w else None
def finalize_updown(self, updown, orig_weight, output_shape):
if self.bias is not None:
updown = updown.reshape(self.bias.shape)
updown += self.bias.to(orig_weight.device, dtype=orig_weight.dtype)
updown = updown.reshape(output_shape)
if len(output_shape) == 4:
updown = updown.reshape(output_shape)
if orig_weight.size().numel() == updown.size().numel():
updown = updown.reshape(orig_weight.shape)
scale = (
self.scale if self.scale is not None
else self.alpha / self.dim if self.dim is not None and self.alpha is not None
else 1.0
)
return updown * scale * self.network.multiplier