mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-19 21:00:14 +08:00
67 lines
2.1 KiB
Python
67 lines
2.1 KiB
Python
|
import logging
|
||
|
from typing import Callable
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
import tqdm
|
||
|
from PIL import Image
|
||
|
|
||
|
from modules import devices, images
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
def upscale_without_tiling(model, img: Image.Image):
|
||
|
img = np.array(img)
|
||
|
img = img[:, :, ::-1]
|
||
|
img = np.ascontiguousarray(np.transpose(img, (2, 0, 1))) / 255
|
||
|
img = torch.from_numpy(img).float()
|
||
|
img = img.unsqueeze(0).to(devices.device_esrgan)
|
||
|
with torch.no_grad():
|
||
|
output = model(img)
|
||
|
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
|
||
|
output = 255. * np.moveaxis(output, 0, 2)
|
||
|
output = output.astype(np.uint8)
|
||
|
output = output[:, :, ::-1]
|
||
|
return Image.fromarray(output, 'RGB')
|
||
|
|
||
|
|
||
|
def upscale_with_model(
|
||
|
model: Callable[[torch.Tensor], torch.Tensor],
|
||
|
img: Image.Image,
|
||
|
*,
|
||
|
tile_size: int,
|
||
|
tile_overlap: int = 0,
|
||
|
desc="tiled upscale",
|
||
|
) -> Image.Image:
|
||
|
if tile_size <= 0:
|
||
|
logger.debug("Upscaling %s without tiling", img)
|
||
|
output = upscale_without_tiling(model, img)
|
||
|
logger.debug("=> %s", output)
|
||
|
return output
|
||
|
|
||
|
grid = images.split_grid(img, tile_size, tile_size, tile_overlap)
|
||
|
newtiles = []
|
||
|
|
||
|
with tqdm.tqdm(total=grid.tile_count, desc=desc) as p:
|
||
|
for y, h, row in grid.tiles:
|
||
|
newrow = []
|
||
|
for x, w, tile in row:
|
||
|
logger.debug("Tile (%d, %d) %s...", x, y, tile)
|
||
|
output = upscale_without_tiling(model, tile)
|
||
|
scale_factor = output.width // tile.width
|
||
|
logger.debug("=> %s (scale factor %s)", output, scale_factor)
|
||
|
newrow.append([x * scale_factor, w * scale_factor, output])
|
||
|
p.update(1)
|
||
|
newtiles.append([y * scale_factor, h * scale_factor, newrow])
|
||
|
|
||
|
newgrid = images.Grid(
|
||
|
newtiles,
|
||
|
tile_w=grid.tile_w * scale_factor,
|
||
|
tile_h=grid.tile_h * scale_factor,
|
||
|
image_w=grid.image_w * scale_factor,
|
||
|
image_h=grid.image_h * scale_factor,
|
||
|
overlap=grid.overlap * scale_factor,
|
||
|
)
|
||
|
return images.combine_grid(newgrid)
|