stable-diffusion-webui/scripts/poor_mans_outpainting.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

154 lines
6.3 KiB
Python
Raw Normal View History

2022-09-04 06:29:43 +08:00
import math
import modules.scripts as scripts
import gradio as gr
from PIL import Image, ImageDraw
2023-05-10 13:43:42 +08:00
from modules import images, devices
2022-09-04 06:29:43 +08:00
from modules.processing import Processed, process_images
2023-05-10 13:43:42 +08:00
from modules.shared import opts, state
2022-09-04 06:29:43 +08:00
class Script(scripts.Script):
def title(self):
return "Poor man's outpainting"
def show(self, is_img2img):
return is_img2img
def ui(self, is_img2img):
if not is_img2img:
return None
pixels = gr.Slider(label="Pixels to expand", minimum=8, maximum=256, step=8, value=128, elem_id=self.elem_id("pixels"))
mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=4, elem_id=self.elem_id("mask_blur"))
mask_blend_power = gr.Slider(label='Blending bias', minimum=0, maximum=8, step=0.1, value=1, elem_id=self.elem_id("mask_blend_power"))
mask_blend_scale = gr.Slider(label='Blending preservation', minimum=0, maximum=8, step=0.1, value=1, elem_id=self.elem_id("mask_blend_scale"))
inpaint_detail_preservation = gr.Slider(label='Blending detail boost', minimum=1, maximum=32, step=0.5, value=16, elem_id=self.elem_id("inpaint_detail_preservation"))
inpainting_fill = gr.Radio(label='Masked content', choices=['fill', 'original', 'latent noise', 'latent nothing'], value='fill', type="index", elem_id=self.elem_id("inpainting_fill"))
direction = gr.CheckboxGroup(label="Outpainting direction", choices=['left', 'right', 'up', 'down'], value=['left', 'right', 'up', 'down'], elem_id=self.elem_id("direction"))
2022-09-04 06:29:43 +08:00
return [pixels, mask_blur, mask_blend_power, mask_blend_scale, inpaint_detail_preservation, inpainting_fill, direction]
2022-09-04 06:29:43 +08:00
def run(self, p, pixels, mask_blur, mask_blend_power, mask_blend_scale, inpaint_detail_preservation, inpainting_fill, direction):
2022-09-04 06:29:43 +08:00
initial_seed = None
initial_info = None
p.mask_blur = mask_blur * 2
p.mask_blend_power = mask_blend_power
p.mask_blend_scale = mask_blend_scale
p.inpaint_detail_preservation = inpaint_detail_preservation
2022-09-04 06:29:43 +08:00
p.inpainting_fill = inpainting_fill
p.inpaint_full_res = False
2022-09-06 19:21:10 +08:00
left = pixels if "left" in direction else 0
right = pixels if "right" in direction else 0
up = pixels if "up" in direction else 0
down = pixels if "down" in direction else 0
2022-09-04 06:29:43 +08:00
init_img = p.init_images[0]
2022-09-06 19:21:10 +08:00
target_w = math.ceil((init_img.width + left + right) / 64) * 64
target_h = math.ceil((init_img.height + up + down) / 64) * 64
if left > 0:
left = left * (target_w - init_img.width) // (left + right)
if right > 0:
right = target_w - init_img.width - left
2022-09-04 06:29:43 +08:00
2022-09-06 19:21:10 +08:00
if up > 0:
up = up * (target_h - init_img.height) // (up + down)
if down > 0:
down = target_h - init_img.height - up
2022-09-04 06:29:43 +08:00
img = Image.new("RGB", (target_w, target_h))
2022-09-06 19:21:10 +08:00
img.paste(init_img, (left, up))
2022-09-04 06:29:43 +08:00
mask = Image.new("L", (img.width, img.height), "white")
draw = ImageDraw.Draw(mask)
2022-09-06 19:21:10 +08:00
draw.rectangle((
left + (mask_blur * 2 if left > 0 else 0),
up + (mask_blur * 2 if up > 0 else 0),
mask.width - right - (mask_blur * 2 if right > 0 else 0),
mask.height - down - (mask_blur * 2 if down > 0 else 0)
), fill="black")
2022-09-04 06:29:43 +08:00
latent_mask = Image.new("L", (img.width, img.height), "white")
latent_draw = ImageDraw.Draw(latent_mask)
latent_draw.rectangle((
left + (mask_blur//2 if left > 0 else 0),
up + (mask_blur//2 if up > 0 else 0),
mask.width - right - (mask_blur//2 if right > 0 else 0),
mask.height - down - (mask_blur//2 if down > 0 else 0)
), fill="black")
2022-09-04 06:29:43 +08:00
devices.torch_gc()
2022-09-04 06:29:43 +08:00
grid = images.split_grid(img, tile_w=p.width, tile_h=p.height, overlap=pixels)
grid_mask = images.split_grid(mask, tile_w=p.width, tile_h=p.height, overlap=pixels)
grid_latent_mask = images.split_grid(latent_mask, tile_w=p.width, tile_h=p.height, overlap=pixels)
2022-09-04 06:29:43 +08:00
p.n_iter = 1
p.batch_size = 1
p.do_not_save_grid = True
p.do_not_save_samples = True
work = []
work_mask = []
work_latent_mask = []
work_results = []
for (y, h, row), (_, _, row_mask), (_, _, row_latent_mask) in zip(grid.tiles, grid_mask.tiles, grid_latent_mask.tiles):
2022-09-04 06:29:43 +08:00
for tiledata, tiledata_mask, tiledata_latent_mask in zip(row, row_mask, row_latent_mask):
x, w = tiledata[0:2]
if x >= left and x+w <= img.width - right and y >= up and y+h <= img.height - down:
continue
2022-09-04 06:29:43 +08:00
work.append(tiledata[2])
work_mask.append(tiledata_mask[2])
work_latent_mask.append(tiledata_latent_mask[2])
batch_count = len(work)
print(f"Poor man's outpainting will process a total of {len(work)} images tiled as {len(grid.tiles[0][2])}x{len(grid.tiles)}.")
state.job_count = batch_count
2022-09-04 06:29:43 +08:00
for i in range(batch_count):
p.init_images = [work[i]]
p.image_mask = work_mask[i]
p.latent_mask = work_latent_mask[i]
state.job = f"Batch {i + 1} out of {batch_count}"
processed = process_images(p)
if initial_seed is None:
initial_seed = processed.seed
initial_info = processed.info
p.seed = processed.seed + 1
work_results += processed.images
2022-09-04 06:29:43 +08:00
image_index = 0
for y, h, row in grid.tiles:
for tiledata in row:
x, w = tiledata[0:2]
if x >= left and x+w <= img.width - right and y >= up and y+h <= img.height - down:
continue
2022-09-04 06:29:43 +08:00
tiledata[2] = work_results[image_index] if image_index < len(work_results) else Image.new("RGB", (p.width, p.height))
image_index += 1
combined_image = images.combine_grid(grid)
if opts.samples_save:
images.save_image(combined_image, p.outpath_samples, "", initial_seed, p.prompt, opts.samples_format, info=initial_info, p=p)
2022-09-04 06:29:43 +08:00
processed = Processed(p, [combined_image], initial_seed, initial_info)
return processed