stable-diffusion-webui/modules/processing.py

845 lines
38 KiB
Python
Raw Normal View History

import json
import math
import os
import sys
import torch
import numpy as np
from PIL import Image, ImageFilter, ImageOps
import random
import cv2
from skimage import exposure
2022-10-18 03:10:36 +08:00
from typing import Any, Dict, List, Optional
import modules.sd_hijack
from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste
from modules.sd_hijack import model_hijack
from modules.shared import opts, cmd_opts, state
import modules.shared as shared
2022-09-07 17:32:28 +08:00
import modules.face_restoration
import modules.images as images
import modules.styles
2022-09-23 08:57:42 +08:00
import logging
# some of those options should not be changed at all because they would break the model, so I removed them from options.
opt_C = 4
opt_f = 8
def setup_color_correction(image):
2022-09-23 08:57:42 +08:00
logging.info("Calibrating color correction.")
correction_target = cv2.cvtColor(np.asarray(image.copy()), cv2.COLOR_RGB2LAB)
return correction_target
def apply_color_correction(correction, image):
2022-09-23 08:57:42 +08:00
logging.info("Applying color correction.")
image = Image.fromarray(cv2.cvtColor(exposure.match_histograms(
cv2.cvtColor(
np.asarray(image),
cv2.COLOR_RGB2LAB
),
correction,
channel_axis=2
), cv2.COLOR_LAB2RGB).astype("uint8"))
return image
2022-10-24 14:15:26 +08:00
def apply_overlay(image, paste_loc, index, overlays):
if overlays is None or index >= len(overlays):
return image
overlay = overlays[index]
if paste_loc is not None:
x, y, w, h = paste_loc
base_image = Image.new('RGBA', (overlay.width, overlay.height))
image = images.resize_image(1, image, w, h)
base_image.paste(image, (x, y))
image = base_image
image = image.convert('RGBA')
image.alpha_composite(overlay)
image = image.convert('RGB')
return image
2022-10-09 08:13:13 +08:00
def get_correct_sampler(p):
if isinstance(p, modules.processing.StableDiffusionProcessingTxt2Img):
return sd_samplers.samplers
elif isinstance(p, modules.processing.StableDiffusionProcessingImg2Img):
return sd_samplers.samplers_for_img2img
2022-10-18 03:10:36 +08:00
elif isinstance(p, modules.api.processing.StableDiffusionProcessingAPI):
return sd_samplers.samplers
2022-10-09 08:13:13 +08:00
2022-10-18 03:10:36 +08:00
class StableDiffusionProcessing():
"""
The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
"""
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_index: int = 0, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None):
self.sd_model = sd_model
self.outpath_samples: str = outpath_samples
self.outpath_grids: str = outpath_grids
self.prompt: str = prompt
2022-09-03 22:21:15 +08:00
self.prompt_for_display: str = None
self.negative_prompt: str = (negative_prompt or "")
self.styles: list = styles or []
self.seed: int = seed
self.subseed: int = subseed
self.subseed_strength: float = subseed_strength
self.seed_resize_from_h: int = seed_resize_from_h
self.seed_resize_from_w: int = seed_resize_from_w
self.sampler_index: int = sampler_index
self.batch_size: int = batch_size
self.n_iter: int = n_iter
self.steps: int = steps
self.cfg_scale: float = cfg_scale
self.width: int = width
self.height: int = height
2022-09-07 17:32:28 +08:00
self.restore_faces: bool = restore_faces
self.tiling: bool = tiling
self.do_not_save_samples: bool = do_not_save_samples
self.do_not_save_grid: bool = do_not_save_grid
2022-09-21 00:07:09 +08:00
self.extra_generation_params: dict = extra_generation_params or {}
self.overlay_images = overlay_images
self.eta = eta
self.do_not_reload_embeddings = do_not_reload_embeddings
self.paste_to = None
self.color_corrections = None
self.denoising_strength: float = denoising_strength
self.sampler_noise_scheduler_override = None
self.ddim_discretize = ddim_discretize or opts.ddim_discretize
2022-10-18 03:10:36 +08:00
self.s_churn = s_churn or opts.s_churn
self.s_tmin = s_tmin or opts.s_tmin
self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option
self.s_noise = s_noise or opts.s_noise
self.override_settings = {k: v for k, v in (override_settings or {}).items() if k not in shared.restricted_opts}
if not seed_enable_extras:
self.subseed = -1
self.subseed_strength = 0
self.seed_resize_from_h = 0
self.seed_resize_from_w = 0
self.scripts = None
self.script_args = None
self.all_prompts = None
self.all_seeds = None
self.all_subseeds = None
def txt2img_image_conditioning(self, x, width=None, height=None):
if self.sampler.conditioning_key not in {'hybrid', 'concat'}:
# Dummy zero conditioning if we're not using inpainting model.
# Still takes up a bit of memory, but no encoder call.
# Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
return torch.zeros(
x.shape[0], 5, 1, 1,
dtype=x.dtype,
device=x.device
)
height = height or self.height
width = width or self.width
# The "masked-image" in this case will just be all zeros since the entire image is masked.
image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device)
image_conditioning = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image_conditioning))
# Add the fake full 1s mask to the first dimension.
image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
image_conditioning = image_conditioning.to(x.dtype)
return image_conditioning
def img2img_image_conditioning(self, source_image, latent_image, image_mask = None):
if self.sampler.conditioning_key not in {'hybrid', 'concat'}:
# Dummy zero conditioning if we're not using inpainting model.
return torch.zeros(
latent_image.shape[0], 5, 1, 1,
dtype=latent_image.dtype,
device=latent_image.device
)
# Handle the different mask inputs
if image_mask is not None:
if torch.is_tensor(image_mask):
conditioning_mask = image_mask
else:
conditioning_mask = np.array(image_mask.convert("L"))
conditioning_mask = conditioning_mask.astype(np.float32) / 255.0
conditioning_mask = torch.from_numpy(conditioning_mask[None, None])
# Inpainting model uses a discretized mask as input, so we round to either 1.0 or 0.0
conditioning_mask = torch.round(conditioning_mask)
else:
conditioning_mask = torch.ones(1, 1, *source_image.shape[-2:])
# Create another latent image, this time with a masked version of the original input.
# Smoothly interpolate between the masked and unmasked latent conditioning image using a parameter.
conditioning_mask = conditioning_mask.to(source_image.device)
conditioning_image = torch.lerp(
source_image,
source_image * (1.0 - conditioning_mask),
getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight)
)
# Encode the new masked image using first stage of network.
conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image))
# Create the concatenated conditioning tensor to be fed to `c_concat`
conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=latent_image.shape[-2:])
conditioning_mask = conditioning_mask.expand(conditioning_image.shape[0], -1, -1, -1)
image_conditioning = torch.cat([conditioning_mask, conditioning_image], dim=1)
image_conditioning = image_conditioning.to(shared.device).type(self.sd_model.dtype)
return image_conditioning
2022-09-19 21:42:56 +08:00
def init(self, all_prompts, all_seeds, all_subseeds):
pass
2022-09-19 21:42:56 +08:00
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
raise NotImplementedError()
class Processed:
def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None):
self.images = images_list
self.prompt = p.prompt
self.negative_prompt = p.negative_prompt
self.seed = seed
self.subseed = subseed
self.subseed_strength = p.subseed_strength
self.info = info
self.width = p.width
self.height = p.height
self.sampler_index = p.sampler_index
self.sampler = sd_samplers.samplers[p.sampler_index].name
self.cfg_scale = p.cfg_scale
self.steps = p.steps
self.batch_size = p.batch_size
self.restore_faces = p.restore_faces
self.face_restoration_model = opts.face_restoration_model if p.restore_faces else None
self.sd_model_hash = shared.sd_model.sd_model_hash
self.seed_resize_from_w = p.seed_resize_from_w
self.seed_resize_from_h = p.seed_resize_from_h
self.denoising_strength = getattr(p, 'denoising_strength', None)
self.extra_generation_params = p.extra_generation_params
self.index_of_first_image = index_of_first_image
self.styles = p.styles
self.job_timestamp = state.job_timestamp
self.clip_skip = opts.CLIP_stop_at_last_layers
2022-09-28 10:11:03 +08:00
self.eta = p.eta
self.ddim_discretize = p.ddim_discretize
self.s_churn = p.s_churn
self.s_tmin = p.s_tmin
self.s_tmax = p.s_tmax
self.s_noise = p.s_noise
self.sampler_noise_scheduler_override = p.sampler_noise_scheduler_override
self.prompt = self.prompt if type(self.prompt) != list else self.prompt[0]
self.negative_prompt = self.negative_prompt if type(self.negative_prompt) != list else self.negative_prompt[0]
2022-10-14 11:05:07 +08:00
self.seed = int(self.seed if type(self.seed) != list else self.seed[0]) if self.seed is not None else -1
self.subseed = int(self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1
self.all_prompts = all_prompts or [self.prompt]
self.all_seeds = all_seeds or [self.seed]
self.all_subseeds = all_subseeds or [self.subseed]
self.infotexts = infotexts or [info]
def js(self):
obj = {
"prompt": self.prompt,
"all_prompts": self.all_prompts,
"negative_prompt": self.negative_prompt,
"seed": self.seed,
"all_seeds": self.all_seeds,
"subseed": self.subseed,
"all_subseeds": self.all_subseeds,
"subseed_strength": self.subseed_strength,
"width": self.width,
"height": self.height,
"sampler_index": self.sampler_index,
"sampler": self.sampler,
"cfg_scale": self.cfg_scale,
"steps": self.steps,
"batch_size": self.batch_size,
"restore_faces": self.restore_faces,
"face_restoration_model": self.face_restoration_model,
"sd_model_hash": self.sd_model_hash,
"seed_resize_from_w": self.seed_resize_from_w,
"seed_resize_from_h": self.seed_resize_from_h,
"denoising_strength": self.denoising_strength,
"extra_generation_params": self.extra_generation_params,
"index_of_first_image": self.index_of_first_image,
"infotexts": self.infotexts,
"styles": self.styles,
"job_timestamp": self.job_timestamp,
"clip_skip": self.clip_skip,
}
return json.dumps(obj)
def infotext(self, p: StableDiffusionProcessing, index):
return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size)
# from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475/3
def slerp(val, low, high):
low_norm = low/torch.norm(low, dim=1, keepdim=True)
high_norm = high/torch.norm(high, dim=1, keepdim=True)
dot = (low_norm*high_norm).sum(1)
if dot.mean() > 0.9995:
return low * val + high * (1 - val)
omega = torch.acos(dot)
so = torch.sin(omega)
res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
return res
def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None):
xs = []
# if we have multiple seeds, this means we are working with batch size>1; this then
# enables the generation of additional tensors with noise that the sampler will use during its processing.
2022-09-18 13:09:52 +08:00
# Using those pre-generated tensors instead of simple torch.randn allows a batch with seeds [100, 101] to
# produce the same images as with two batches [100], [101].
2022-10-11 01:32:37 +08:00
if p is not None and p.sampler is not None and (len(seeds) > 1 and opts.enable_batch_seeds or opts.eta_noise_seed_delta > 0):
sampler_noises = [[] for _ in range(p.sampler.number_of_needed_noises(p))]
else:
sampler_noises = None
for i, seed in enumerate(seeds):
noise_shape = shape if seed_resize_from_h <= 0 or seed_resize_from_w <= 0 else (shape[0], seed_resize_from_h//8, seed_resize_from_w//8)
subnoise = None
if subseeds is not None:
subseed = 0 if i >= len(subseeds) else subseeds[i]
2022-09-12 22:32:44 +08:00
2022-09-13 01:09:32 +08:00
subnoise = devices.randn(subseed, noise_shape)
# randn results depend on device; gpu and cpu get different results for same seed;
# the way I see it, it's better to do this on CPU, so that everyone gets same result;
# but the original script had it like this, so I do not dare change it for now because
# it will break everyone's seeds.
2022-09-13 01:09:32 +08:00
noise = devices.randn(seed, noise_shape)
if subnoise is not None:
noise = slerp(subseed_strength, noise, subnoise)
if noise_shape != shape:
2022-09-13 01:09:32 +08:00
x = devices.randn(seed, shape)
dx = (shape[2] - noise_shape[2]) // 2
dy = (shape[1] - noise_shape[1]) // 2
w = noise_shape[2] if dx >= 0 else noise_shape[2] + 2 * dx
h = noise_shape[1] if dy >= 0 else noise_shape[1] + 2 * dy
tx = 0 if dx < 0 else dx
ty = 0 if dy < 0 else dy
dx = max(-dx, 0)
dy = max(-dy, 0)
x[:, ty:ty+h, tx:tx+w] = noise[:, dy:dy+h, dx:dx+w]
noise = x
if sampler_noises is not None:
cnt = p.sampler.number_of_needed_noises(p)
2022-10-11 01:32:37 +08:00
if opts.eta_noise_seed_delta > 0:
torch.manual_seed(seed + opts.eta_noise_seed_delta)
for j in range(cnt):
sampler_noises[j].append(devices.randn_without_seed(tuple(noise_shape)))
xs.append(noise)
if sampler_noises is not None:
p.sampler.sampler_noises = [torch.stack(n).to(shared.device) for n in sampler_noises]
x = torch.stack(xs).to(shared.device)
return x
2022-10-10 21:11:14 +08:00
def decode_first_stage(model, x):
with devices.autocast(disable=x.dtype == devices.dtype_vae):
x = model.decode_first_stage(x)
return x
def get_fixed_seed(seed):
if seed is None or seed == '' or seed == -1:
return int(random.randrange(4294967294))
return seed
def fix_seed(p):
p.seed = get_fixed_seed(p.seed)
p.subseed = get_fixed_seed(p.subseed)
def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration=0, position_in_batch=0):
index = position_in_batch + iteration * p.batch_size
clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers)
generation_params = {
"Steps": p.steps,
2022-10-09 08:13:13 +08:00
"Sampler": get_correct_sampler(p)[p.sampler_index].name,
"CFG scale": p.cfg_scale,
"Seed": all_seeds[index],
"Face restoration": (opts.face_restoration_model if p.restore_faces else None),
"Size": f"{p.width}x{p.height}",
"Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
"Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')),
"Hypernet": (None if shared.loaded_hypernetwork is None else shared.loaded_hypernetwork.name),
"Hypernet strength": (None if shared.loaded_hypernetwork is None or shared.opts.sd_hypernetwork_strength >= 1 else shared.opts.sd_hypernetwork_strength),
"Batch size": (None if p.batch_size < 2 else p.batch_size),
"Batch pos": (None if p.batch_size < 2 else position_in_batch),
"Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]),
"Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
"Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
"Denoising strength": getattr(p, 'denoising_strength', None),
"Eta": (None if p.sampler is None or p.sampler.eta == p.sampler.default_eta else p.sampler.eta),
"Clip skip": None if clip_skip <= 1 else clip_skip,
2022-10-11 01:32:37 +08:00
"ENSD": None if opts.eta_noise_seed_delta == 0 else opts.eta_noise_seed_delta,
}
2022-09-21 00:07:09 +08:00
generation_params.update(p.extra_generation_params)
generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])
negative_prompt_text = "\nNegative prompt: " + p.negative_prompt if p.negative_prompt else ""
return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip()
def process_images(p: StableDiffusionProcessing) -> Processed:
stored_opts = {k: opts.data[k] for k in p.override_settings.keys()}
try:
for k, v in p.override_settings.items():
opts.data[k] = v # we don't call onchange for simplicity which makes changing model, hypernet impossible
res = process_images_inner(p)
finally:
for k, v in stored_opts.items():
opts.data[k] = v
return res
def process_images_inner(p: StableDiffusionProcessing) -> Processed:
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
if type(p.prompt) == list:
assert(len(p.prompt) > 0)
else:
assert p.prompt is not None
2022-10-09 11:57:19 +08:00
with open(os.path.join(shared.script_path, "params.txt"), "w", encoding="utf8") as file:
processed = Processed(p, [], p.seed, "")
file.write(processed.infotext(p, 0))
devices.torch_gc()
seed = get_fixed_seed(p.seed)
subseed = get_fixed_seed(p.subseed)
modules.sd_hijack.model_hijack.apply_circular(p.tiling)
modules.sd_hijack.model_hijack.clear_comments()
comments = {}
shared.prompt_styles.apply_styles(p)
if type(p.prompt) == list:
p.all_prompts = p.prompt
else:
p.all_prompts = p.batch_size * p.n_iter * [p.prompt]
2022-09-03 22:21:15 +08:00
if type(seed) == list:
p.all_seeds = seed
2022-09-03 22:21:15 +08:00
else:
p.all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(p.all_prompts))]
if type(subseed) == list:
p.all_subseeds = subseed
else:
p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))]
def infotext(iteration=0, position_in_batch=0):
return create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments, iteration, position_in_batch)
if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
model_hijack.embedding_db.load_textual_inversion_embeddings()
if p.scripts is not None:
2022-10-30 03:20:02 +08:00
p.scripts.process(p)
infotexts = []
output_images = []
with torch.no_grad(), p.sd_model.ema_scope():
2022-10-04 21:54:31 +08:00
with devices.autocast():
p.init(p.all_prompts, p.all_seeds, p.all_subseeds)
if state.job_count == -1:
state.job_count = p.n_iter
for n in range(p.n_iter):
if state.skipped:
state.skipped = False
if state.interrupted:
break
prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
2022-10-30 03:20:02 +08:00
if len(prompts) == 0:
break
with devices.autocast():
uc = prompt_parser.get_learned_conditioning(shared.sd_model, len(prompts) * [p.negative_prompt], p.steps)
c = prompt_parser.get_multicond_learned_conditioning(shared.sd_model, prompts, p.steps)
if len(model_hijack.comments) > 0:
for comment in model_hijack.comments:
comments[comment] = 1
if p.n_iter > 1:
shared.state.job = f"Batch {n+1} out of {p.n_iter}"
with devices.autocast():
samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength)
2022-10-10 22:03:45 +08:00
samples_ddim = samples_ddim.to(devices.dtype_vae)
2022-10-10 21:11:14 +08:00
x_samples_ddim = decode_first_stage(p.sd_model, samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
del samples_ddim
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
lowvram.send_everything_to_cpu()
devices.torch_gc()
2022-09-13 08:15:35 +08:00
if opts.filter_nsfw:
import modules.safety as safety
x_samples_ddim = modules.safety.censor_batch(x_samples_ddim)
2022-09-13 08:15:35 +08:00
for i, x_sample in enumerate(x_samples_ddim):
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8)
if p.restore_faces:
if opts.save and not p.do_not_save_samples and opts.save_images_before_face_restoration:
images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-face-restoration")
devices.torch_gc()
x_sample = modules.face_restoration.restore_faces(x_sample)
devices.torch_gc()
image = Image.fromarray(x_sample)
2022-10-24 03:44:46 +08:00
if p.color_corrections is not None and i < len(p.color_corrections):
if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction:
2022-10-24 14:15:26 +08:00
image_without_cc = apply_overlay(image, p.paste_to, i, p.overlay_images)
images.save_image(image_without_cc, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-color-correction")
image = apply_color_correction(p.color_corrections[i], image)
2022-10-24 14:15:26 +08:00
image = apply_overlay(image, p.paste_to, i, p.overlay_images)
if opts.samples_save and not p.do_not_save_samples:
images.save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p)
text = infotext(n, i)
infotexts.append(text)
if opts.enable_pnginfo:
image.info["parameters"] = text
output_images.append(image)
del x_samples_ddim
devices.torch_gc()
state.nextjob()
p.color_corrections = None
index_of_first_image = 0
unwanted_grid_because_of_img_count = len(output_images) < 2 and opts.grid_only_if_multiple
if (opts.return_grid or opts.grid_save) and not p.do_not_save_grid and not unwanted_grid_because_of_img_count:
2022-09-03 22:21:15 +08:00
grid = images.image_grid(output_images, p.batch_size)
if opts.return_grid:
text = infotext()
infotexts.insert(0, text)
if opts.enable_pnginfo:
grid.info["parameters"] = text
output_images.insert(0, grid)
index_of_first_image = 1
if opts.grid_save:
images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True)
devices.torch_gc()
2022-10-30 03:20:02 +08:00
res = Processed(p, output_images, p.all_seeds[0], infotext() + "".join(["\n\n" + x for x in comments]), subseed=p.all_subseeds[0], all_prompts=p.all_prompts, all_seeds=p.all_seeds, all_subseeds=p.all_subseeds, index_of_first_image=index_of_first_image, infotexts=infotexts)
if p.scripts is not None:
p.scripts.postprocess(p, res)
p.sd_model = None
p.sampler = None
2022-10-30 03:20:02 +08:00
return res
class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
sampler = None
2022-09-19 21:42:56 +08:00
2022-10-18 03:10:36 +08:00
def __init__(self, enable_hr: bool=False, denoising_strength: float=0.75, firstphase_width: int=0, firstphase_height: int=0, **kwargs):
2022-09-19 21:42:56 +08:00
super().__init__(**kwargs)
self.enable_hr = enable_hr
self.denoising_strength = denoising_strength
self.firstphase_width = firstphase_width
self.firstphase_height = firstphase_height
self.truncate_x = 0
self.truncate_y = 0
2022-09-19 21:42:56 +08:00
def init(self, all_prompts, all_seeds, all_subseeds):
if self.enable_hr:
if state.job_count == -1:
state.job_count = self.n_iter * 2
else:
state.job_count = state.job_count * 2
self.extra_generation_params["First pass size"] = f"{self.firstphase_width}x{self.firstphase_height}"
if self.firstphase_width == 0 or self.firstphase_height == 0:
desired_pixel_count = 512 * 512
actual_pixel_count = self.width * self.height
scale = math.sqrt(desired_pixel_count / actual_pixel_count)
self.firstphase_width = math.ceil(scale * self.width / 64) * 64
self.firstphase_height = math.ceil(scale * self.height / 64) * 64
firstphase_width_truncated = int(scale * self.width)
firstphase_height_truncated = int(scale * self.height)
else:
width_ratio = self.width / self.firstphase_width
height_ratio = self.height / self.firstphase_height
if width_ratio > height_ratio:
firstphase_width_truncated = self.firstphase_width
firstphase_height_truncated = self.firstphase_width * self.height / self.width
else:
firstphase_width_truncated = self.firstphase_height * self.width / self.height
firstphase_height_truncated = self.firstphase_height
self.truncate_x = int(self.firstphase_width - firstphase_width_truncated) // opt_f
self.truncate_y = int(self.firstphase_height - firstphase_height_truncated) // opt_f
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
if not self.enable_hr:
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
2022-09-19 21:42:56 +08:00
return samples
x = create_random_tensors([opt_C, self.firstphase_height // opt_f, self.firstphase_width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x, self.firstphase_width, self.firstphase_height))
2022-09-19 21:42:56 +08:00
samples = samples[:, :, self.truncate_y//2:samples.shape[2]-self.truncate_y//2, self.truncate_x//2:samples.shape[3]-self.truncate_x//2]
2022-09-19 21:42:56 +08:00
if opts.use_scale_latent_for_hires_fix:
samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
2022-09-19 21:42:56 +08:00
else:
decoded_samples = decode_first_stage(self.sd_model, samples)
lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)
batch_images = []
for i, x_sample in enumerate(lowres_samples):
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8)
image = Image.fromarray(x_sample)
image = images.resize_image(0, image, self.width, self.height)
image = np.array(image).astype(np.float32) / 255.0
image = np.moveaxis(image, 2, 0)
batch_images.append(image)
decoded_samples = torch.from_numpy(np.array(batch_images))
decoded_samples = decoded_samples.to(shared.device)
decoded_samples = 2. * decoded_samples - 1.
samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples))
2022-09-19 21:42:56 +08:00
shared.state.nextjob()
2022-10-06 19:12:52 +08:00
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
2022-09-19 21:42:56 +08:00
noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
2022-10-30 12:36:56 +08:00
image_conditioning = self.txt2img_image_conditioning(x)
# GC now before running the next img2img to prevent running out of memory
x = None
devices.torch_gc()
samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.steps, image_conditioning=image_conditioning)
2022-09-19 21:42:56 +08:00
return samples
class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
sampler = None
2022-10-23 03:42:00 +08:00
def __init__(self, init_images: list=None, resize_mode: int=0, denoising_strength: float=0.75, mask: Any=None, mask_blur: int=4, inpainting_fill: int=0, inpaint_full_res: bool=True, inpaint_full_res_padding: int=0, inpainting_mask_invert: int=0, **kwargs):
super().__init__(**kwargs)
self.init_images = init_images
self.resize_mode: int = resize_mode
self.denoising_strength: float = denoising_strength
self.init_latent = None
self.image_mask = mask
2022-09-04 06:29:43 +08:00
#self.image_unblurred_mask = None
self.latent_mask = None
self.mask_for_overlay = None
self.mask_blur = mask_blur
self.inpainting_fill = inpainting_fill
self.inpaint_full_res = inpaint_full_res
self.inpaint_full_res_padding = inpaint_full_res_padding
2022-09-04 02:02:38 +08:00
self.inpainting_mask_invert = inpainting_mask_invert
self.mask = None
self.nmask = None
self.image_conditioning = None
2022-09-19 21:42:56 +08:00
def init(self, all_prompts, all_seeds, all_subseeds):
2022-10-06 19:12:52 +08:00
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers_for_img2img, self.sampler_index, self.sd_model)
crop_region = None
if self.image_mask is not None:
2022-09-04 02:02:38 +08:00
self.image_mask = self.image_mask.convert('L')
if self.inpainting_mask_invert:
self.image_mask = ImageOps.invert(self.image_mask)
2022-09-04 06:29:43 +08:00
#self.image_unblurred_mask = self.image_mask
if self.mask_blur > 0:
2022-09-04 02:02:38 +08:00
self.image_mask = self.image_mask.filter(ImageFilter.GaussianBlur(self.mask_blur))
if self.inpaint_full_res:
self.mask_for_overlay = self.image_mask
mask = self.image_mask.convert('L')
crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding)
crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
x1, y1, x2, y2 = crop_region
mask = mask.crop(crop_region)
self.image_mask = images.resize_image(2, mask, self.width, self.height)
self.paste_to = (x1, y1, x2-x1, y2-y1)
else:
self.image_mask = images.resize_image(self.resize_mode, self.image_mask, self.width, self.height)
np_mask = np.array(self.image_mask)
np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
self.mask_for_overlay = Image.fromarray(np_mask)
self.overlay_images = []
latent_mask = self.latent_mask if self.latent_mask is not None else self.image_mask
add_color_corrections = opts.img2img_color_correction and self.color_corrections is None
if add_color_corrections:
self.color_corrections = []
imgs = []
for img in self.init_images:
image = img.convert("RGB")
if crop_region is None:
image = images.resize_image(self.resize_mode, image, self.width, self.height)
if self.image_mask is not None:
image_masked = Image.new('RGBa', (image.width, image.height))
image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
self.overlay_images.append(image_masked.convert('RGBA'))
if crop_region is not None:
image = image.crop(crop_region)
image = images.resize_image(2, image, self.width, self.height)
if self.image_mask is not None:
if self.inpainting_fill != 1:
image = masking.fill(image, latent_mask)
if add_color_corrections:
self.color_corrections.append(setup_color_correction(image))
image = np.array(image).astype(np.float32) / 255.0
image = np.moveaxis(image, 2, 0)
imgs.append(image)
if len(imgs) == 1:
batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0)
if self.overlay_images is not None:
self.overlay_images = self.overlay_images * self.batch_size
if self.color_corrections is not None and len(self.color_corrections) == 1:
self.color_corrections = self.color_corrections * self.batch_size
elif len(imgs) <= self.batch_size:
self.batch_size = len(imgs)
batch_images = np.array(imgs)
else:
raise RuntimeError(f"bad number of images passed: {len(imgs)}; expecting {self.batch_size} or less")
image = torch.from_numpy(batch_images)
image = 2. * image - 1.
image = image.to(shared.device)
self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))
if self.image_mask is not None:
init_mask = latent_mask
2022-09-04 06:29:43 +08:00
latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
2022-09-13 01:09:32 +08:00
latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
latmask = latmask[0]
latmask = np.around(latmask)
latmask = np.tile(latmask[None], (4, 1, 1))
self.mask = torch.asarray(1.0 - latmask).to(shared.device).type(self.sd_model.dtype)
self.nmask = torch.asarray(latmask).to(shared.device).type(self.sd_model.dtype)
2022-09-19 21:42:56 +08:00
# this needs to be fixed to be done in sample() using actual seeds for batches
if self.inpainting_fill == 2:
2022-09-19 21:42:56 +08:00
self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], all_seeds[0:self.init_latent.shape[0]]) * self.nmask
elif self.inpainting_fill == 3:
self.init_latent = self.init_latent * self.mask
self.image_conditioning = self.img2img_image_conditioning(image, self.init_latent, self.image_mask)
2022-09-19 21:42:56 +08:00
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
if self.mask is not None:
samples = samples * self.nmask + self.init_latent * self.mask
del x
devices.torch_gc()
return samples