stable-diffusion-webui/extensions-builtin/Lora/network_oft.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

126 lines
4.7 KiB
Python
Raw Normal View History

2023-10-18 14:35:50 +08:00
import torch
import network
class ModuleTypeOFT(network.ModuleType):
def create_module(self, net: network.Network, weights: network.NetworkWeights):
if all(x in weights.w for x in ["oft_blocks"]):
return NetworkModuleOFT(net, weights)
return None
# adapted from kohya's implementation https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py
2023-10-18 14:35:50 +08:00
class NetworkModuleOFT(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights):
2023-10-18 19:16:01 +08:00
2023-10-18 14:35:50 +08:00
super().__init__(net, weights)
self.oft_blocks = weights.w["oft_blocks"]
self.alpha = weights.w["alpha"]
self.dim = self.oft_blocks.shape[0]
self.num_blocks = self.dim
if "Linear" in self.sd_module.__class__.__name__:
self.out_dim = self.sd_module.out_features
elif "Conv" in self.sd_module.__class__.__name__:
self.out_dim = self.sd_module.out_channels
self.constraint = self.alpha * self.out_dim
2023-10-18 14:35:50 +08:00
self.block_size = self.out_dim // self.num_blocks
2023-10-18 19:16:01 +08:00
self.org_module: list[torch.Module] = [self.sd_module]
2023-10-22 08:37:17 +08:00
#self.org_weight = self.org_module[0].weight.to(self.org_module[0].weight.device, copy=True)
2023-10-22 07:07:45 +08:00
init_multiplier = self.multiplier() * self.calc_scale()
self.last_multiplier = init_multiplier
2023-10-22 07:07:45 +08:00
self.R = self.get_weight(self.oft_blocks, init_multiplier)
2023-10-22 08:37:17 +08:00
self.hooks = []
self.merged_weight = self.merge_weight()
2023-10-22 08:37:17 +08:00
#self.apply_to()
self.applied = False
self.merged = False
def merge_weight(self):
2023-10-22 08:37:17 +08:00
org_weight = self.org_module[0].weight
R = self.R.to(org_weight.device, dtype=org_weight.dtype)
if org_weight.dim() == 4:
weight = torch.einsum("oihw, op -> pihw", org_weight, R)
else:
2023-10-22 08:37:17 +08:00
weight = torch.einsum("oi, op -> pi", org_weight, R)
return weight
2023-10-22 07:07:45 +08:00
def replace_weight(self, new_weight):
org_sd = self.org_module[0].state_dict()
org_sd['weight'] = new_weight
self.org_module[0].load_state_dict(org_sd)
self.merged = True
def restore_weight(self):
2023-10-22 08:37:17 +08:00
pass
#org_sd = self.org_module[0].state_dict()
#org_sd['weight'] = self.org_weight
#self.org_module[0].load_state_dict(org_sd)
#self.merged = False
2023-10-22 07:07:45 +08:00
# FIXME: hook forward method of original linear, but how do we undo the hook when we are done?
2023-10-18 19:16:01 +08:00
def apply_to(self):
2023-10-22 08:37:17 +08:00
if not self.applied:
self.org_forward = self.org_module[0].forward
#self.org_module[0].forward = self.forward
prehook = self.org_module[0].register_forward_pre_hook(self.pre_forward_hook)
hook = self.org_module[0].register_forward_hook(self.forward_hook)
self.hooks.append(prehook)
self.hooks.append(hook)
self.applied = True
def remove_from(self):
if self.applied:
for hook in self.hooks:
hook.remove()
self.hooks = []
self.applied = False
2023-10-20 03:52:14 +08:00
def get_weight(self, oft_blocks, multiplier=None):
multiplier = multiplier.to(oft_blocks.device, dtype=oft_blocks.dtype)
constraint = self.constraint.to(oft_blocks.device, dtype=oft_blocks.dtype)
block_Q = oft_blocks - oft_blocks.transpose(1, 2)
2023-10-18 14:35:50 +08:00
norm_Q = torch.norm(block_Q.flatten())
new_norm_Q = torch.clamp(norm_Q, max=constraint)
2023-10-18 14:35:50 +08:00
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
m_I = torch.eye(self.block_size, device=oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1)
2023-10-20 04:13:02 +08:00
block_R = torch.matmul(m_I + block_Q, (m_I - block_Q).inverse())
block_R_weighted = multiplier * block_R + (1 - multiplier) * m_I
R = torch.block_diag(*block_R_weighted)
2023-10-18 14:35:50 +08:00
return R
def calc_updown(self, orig_weight):
2023-10-22 08:37:17 +08:00
if not self.applied:
self.apply_to()
self.merged_weight = self.merged_weight.to(orig_weight.device, dtype=orig_weight.dtype)
updown = torch.zeros_like(orig_weight, device=orig_weight.device, dtype=orig_weight.dtype)
output_shape = orig_weight.shape
2023-10-22 08:37:17 +08:00
orig_weight = self.merged_weight
#output_shape = self.oft_blocks.shape
2023-10-18 19:27:44 +08:00
2023-10-18 14:35:50 +08:00
return self.finalize_updown(updown, orig_weight, output_shape)
2023-10-22 07:07:45 +08:00
def pre_forward_hook(self, module, input):
2023-10-22 08:37:17 +08:00
#if not self.applied:
# self.apply_to()
multiplier = self.multiplier() * self.calc_scale()
2023-10-22 07:07:45 +08:00
if not multiplier==self.last_multiplier or not self.merged:
self.R = self.get_weight(self.oft_blocks, multiplier)
self.last_multiplier = multiplier
self.merged_weight = self.merge_weight()
self.replace_weight(self.merged_weight)
def forward_hook(self, module, args, output):
2023-10-22 08:37:17 +08:00
pass