stable-diffusion-webui/modules/img2img.py

125 lines
4.7 KiB
Python
Raw Normal View History

import math
import os
import sys
import traceback
import numpy as np
from PIL import Image, ImageOps, ImageChops
from modules import devices
from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images
from modules.shared import opts, state
import modules.shared as shared
import modules.processing as processing
from modules.ui import plaintext_to_html
import modules.images as images
2022-09-03 22:21:15 +08:00
import modules.scripts
def process_batch(p, input_dir, output_dir, args):
processing.fix_seed(p)
images = [file for file in [os.path.join(input_dir, x) for x in os.listdir(input_dir)] if os.path.isfile(file)]
print(f"Will process {len(images)} images, creating {p.n_iter * p.batch_size} new images for each.")
p.do_not_save_grid = True
p.do_not_save_samples = True
state.job_count = len(images) * p.n_iter
for i, image in enumerate(images):
state.job = f"{i+1} out of {len(images)}"
if state.interrupted:
break
img = Image.open(image)
p.init_images = [img] * p.batch_size
proc = modules.scripts.scripts_img2img.run(p, *args)
if proc is None:
proc = process_images(p)
for n, processed_image in enumerate(proc.images):
filename = os.path.basename(image)
if n > 0:
left, right = os.path.splitext(filename)
filename = f"{left}-{n}{right}"
processed_image.save(os.path.join(output_dir, filename))
def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_img_inpaint, init_mask_inpaint, mask_mode, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, *args):
is_inpaint = mode == 1
is_batch = mode == 2
if is_inpaint:
2022-09-10 00:43:16 +08:00
if mask_mode == 0:
image = init_img_with_mask['image']
mask = init_img_with_mask['mask']
alpha_mask = ImageOps.invert(image.split()[-1]).convert('L').point(lambda x: 255 if x > 0 else 0, mode='1')
mask = ImageChops.lighter(alpha_mask, mask.convert('L')).convert('L')
image = image.convert('RGB')
else:
image = init_img_inpaint
mask = init_mask_inpaint
else:
image = init_img
mask = None
assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]'
p = StableDiffusionProcessingImg2Img(
sd_model=shared.sd_model,
outpath_samples=opts.outdir_samples or opts.outdir_img2img_samples,
outpath_grids=opts.outdir_grids or opts.outdir_img2img_grids,
prompt=prompt,
2022-09-09 14:15:36 +08:00
negative_prompt=negative_prompt,
styles=[prompt_style, prompt_style2],
seed=seed,
subseed=subseed,
subseed_strength=subseed_strength,
seed_resize_from_h=seed_resize_from_h,
seed_resize_from_w=seed_resize_from_w,
seed_enable_extras=seed_enable_extras,
sampler_index=sampler_index,
batch_size=batch_size,
n_iter=n_iter,
steps=steps,
cfg_scale=cfg_scale,
width=width,
height=height,
2022-09-07 17:32:28 +08:00
restore_faces=restore_faces,
tiling=tiling,
init_images=[image],
mask=mask,
mask_blur=mask_blur,
inpainting_fill=inpainting_fill,
resize_mode=resize_mode,
denoising_strength=denoising_strength,
inpaint_full_res=inpaint_full_res,
inpaint_full_res_padding=inpaint_full_res_padding,
2022-09-04 02:02:38 +08:00
inpainting_mask_invert=inpainting_mask_invert,
)
2022-09-08 21:37:13 +08:00
print(f"\nimg2img: {prompt}", file=shared.progress_print_out)
2022-09-21 00:07:09 +08:00
p.extra_generation_params["Mask blur"] = mask_blur
if is_batch:
process_batch(p, img2img_batch_input_dir, img2img_batch_output_dir, args)
processed = Processed(p, [], p.seed, "")
else:
2022-09-04 06:29:43 +08:00
processed = modules.scripts.scripts_img2img.run(p, *args)
2022-09-03 22:21:15 +08:00
if processed is None:
processed = process_images(p)
2022-09-08 21:37:13 +08:00
shared.total_tqdm.clear()
generation_info_js = processed.js()
if opts.samples_log_stdout:
print(generation_info_js)
return processed.images, generation_info_js, plaintext_to_html(processed.info)