stable-diffusion-webui/modules/models/sd3/other_impls.py

511 lines
24 KiB
Python
Raw Normal View History

### This file contains impls for underlying related models (CLIP, T5, etc)
2024-06-16 13:13:23 +08:00
import torch
import math
from torch import nn
from transformers import CLIPTokenizer, T5TokenizerFast
2024-07-07 21:36:53 +08:00
from modules import sd_hijack
#################################################################################################
### Core/Utility
#################################################################################################
2024-06-24 14:06:10 +08:00
class AutocastLinear(nn.Linear):
"""Same as usual linear layer, but casts its weights to whatever the parameter type is.
This is different from torch.autocast in a way that float16 layer processing float32 input
will return float16 with autocast on, and float32 with this. T5 seems to be fucked
if you do it in full float16 (returning almost all zeros in the final output).
"""
def forward(self, x):
return torch.nn.functional.linear(x, self.weight.to(x.dtype), self.bias.to(x.dtype) if self.bias is not None else None)
def attention(q, k, v, heads, mask=None):
"""Convenience wrapper around a basic attention operation"""
b, _, dim_head = q.shape
dim_head //= heads
2024-06-16 13:13:23 +08:00
q, k, v = [t.view(b, -1, heads, dim_head).transpose(1, 2) for t in (q, k, v)]
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
return out.transpose(1, 2).reshape(b, -1, heads * dim_head)
class Mlp(nn.Module):
""" MLP as used in Vision Transformer, MLP-Mixer and related networks"""
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, bias=True, dtype=None, device=None):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
2024-06-29 13:05:55 +08:00
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias, dtype=dtype, device=device)
self.act = act_layer
2024-06-29 13:05:55 +08:00
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias, dtype=dtype, device=device)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.fc2(x)
return x
#################################################################################################
### CLIP
#################################################################################################
class CLIPAttention(torch.nn.Module):
def __init__(self, embed_dim, heads, dtype, device):
super().__init__()
self.heads = heads
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
def forward(self, x, mask=None):
q = self.q_proj(x)
k = self.k_proj(x)
v = self.v_proj(x)
out = attention(q, k, v, self.heads, mask)
return self.out_proj(out)
ACTIVATIONS = {
"quick_gelu": lambda a: a * torch.sigmoid(1.702 * a),
"gelu": torch.nn.functional.gelu,
}
class CLIPLayer(torch.nn.Module):
def __init__(self, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device):
super().__init__()
self.layer_norm1 = nn.LayerNorm(embed_dim, dtype=dtype, device=device)
self.self_attn = CLIPAttention(embed_dim, heads, dtype, device)
self.layer_norm2 = nn.LayerNorm(embed_dim, dtype=dtype, device=device)
#self.mlp = CLIPMLP(embed_dim, intermediate_size, intermediate_activation, dtype, device)
self.mlp = Mlp(embed_dim, intermediate_size, embed_dim, act_layer=ACTIVATIONS[intermediate_activation], dtype=dtype, device=device)
def forward(self, x, mask=None):
x += self.self_attn(self.layer_norm1(x), mask)
x += self.mlp(self.layer_norm2(x))
return x
class CLIPEncoder(torch.nn.Module):
def __init__(self, num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device):
super().__init__()
self.layers = torch.nn.ModuleList([CLIPLayer(embed_dim, heads, intermediate_size, intermediate_activation, dtype, device) for i in range(num_layers)])
def forward(self, x, mask=None, intermediate_output=None):
if intermediate_output is not None:
if intermediate_output < 0:
intermediate_output = len(self.layers) + intermediate_output
intermediate = None
2024-06-16 13:13:23 +08:00
for i, layer in enumerate(self.layers):
x = layer(x, mask)
if i == intermediate_output:
intermediate = x.clone()
return x, intermediate
class CLIPEmbeddings(torch.nn.Module):
2024-07-07 21:36:53 +08:00
def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None, textual_inversion_key="clip_l"):
super().__init__()
2024-07-07 21:36:53 +08:00
self.token_embedding = sd_hijack.TextualInversionEmbeddings(vocab_size, embed_dim, dtype=dtype, device=device, textual_inversion_key=textual_inversion_key)
self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
def forward(self, input_tokens):
return self.token_embedding(input_tokens) + self.position_embedding.weight
class CLIPTextModel_(torch.nn.Module):
def __init__(self, config_dict, dtype, device):
num_layers = config_dict["num_hidden_layers"]
embed_dim = config_dict["hidden_size"]
heads = config_dict["num_attention_heads"]
intermediate_size = config_dict["intermediate_size"]
intermediate_activation = config_dict["hidden_act"]
super().__init__()
2024-07-07 21:36:53 +08:00
self.embeddings = CLIPEmbeddings(embed_dim, dtype=torch.float32, device=device, textual_inversion_key=config_dict.get('textual_inversion_key', 'clip_l'))
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device)
self.final_layer_norm = nn.LayerNorm(embed_dim, dtype=dtype, device=device)
def forward(self, input_tokens, intermediate_output=None, final_layer_norm_intermediate=True):
x = self.embeddings(input_tokens)
causal_mask = torch.empty(x.shape[1], x.shape[1], dtype=x.dtype, device=x.device).fill_(float("-inf")).triu_(1)
x, i = self.encoder(x, mask=causal_mask, intermediate_output=intermediate_output)
x = self.final_layer_norm(x)
if i is not None and final_layer_norm_intermediate:
i = self.final_layer_norm(i)
pooled_output = x[torch.arange(x.shape[0], device=x.device), input_tokens.to(dtype=torch.int, device=x.device).argmax(dim=-1),]
return x, i, pooled_output
class CLIPTextModel(torch.nn.Module):
def __init__(self, config_dict, dtype, device):
super().__init__()
self.num_layers = config_dict["num_hidden_layers"]
self.text_model = CLIPTextModel_(config_dict, dtype, device)
embed_dim = config_dict["hidden_size"]
self.text_projection = nn.Linear(embed_dim, embed_dim, bias=False, dtype=dtype, device=device)
self.text_projection.weight.copy_(torch.eye(embed_dim))
self.dtype = dtype
def get_input_embeddings(self):
return self.text_model.embeddings.token_embedding
def set_input_embeddings(self, embeddings):
self.text_model.embeddings.token_embedding = embeddings
def forward(self, *args, **kwargs):
x = self.text_model(*args, **kwargs)
out = self.text_projection(x[2])
return (x[0], x[1], out, x[2])
class SDTokenizer:
def __init__(self, max_length=77, pad_with_end=True, tokenizer=None, has_start_token=True, pad_to_max_length=True, min_length=None):
self.tokenizer = tokenizer
self.max_length = max_length
self.min_length = min_length
empty = self.tokenizer('')["input_ids"]
if has_start_token:
self.tokens_start = 1
self.start_token = empty[0]
self.end_token = empty[1]
else:
self.tokens_start = 0
self.start_token = None
self.end_token = empty[0]
self.pad_with_end = pad_with_end
self.pad_to_max_length = pad_to_max_length
vocab = self.tokenizer.get_vocab()
self.inv_vocab = {v: k for k, v in vocab.items()}
self.max_word_length = 8
def tokenize_with_weights(self, text:str):
"""Tokenize the text, with weight values - presume 1.0 for all and ignore other features here. The details aren't relevant for a reference impl, and weights themselves has weak effect on SD3."""
if self.pad_with_end:
pad_token = self.end_token
else:
pad_token = 0
batch = []
if self.start_token is not None:
batch.append((self.start_token, 1.0))
to_tokenize = text.replace("\n", " ").split(' ')
to_tokenize = [x for x in to_tokenize if x != ""]
for word in to_tokenize:
batch.extend([(t, 1) for t in self.tokenizer(word)["input_ids"][self.tokens_start:-1]])
batch.append((self.end_token, 1.0))
if self.pad_to_max_length:
batch.extend([(pad_token, 1.0)] * (self.max_length - len(batch)))
if self.min_length is not None and len(batch) < self.min_length:
batch.extend([(pad_token, 1.0)] * (self.min_length - len(batch)))
return [batch]
class SDXLClipGTokenizer(SDTokenizer):
def __init__(self, tokenizer):
super().__init__(pad_with_end=False, tokenizer=tokenizer)
class SD3Tokenizer:
def __init__(self):
clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
self.clip_l = SDTokenizer(tokenizer=clip_tokenizer)
self.clip_g = SDXLClipGTokenizer(clip_tokenizer)
self.t5xxl = T5XXLTokenizer()
def tokenize_with_weights(self, text:str):
out = {}
out["g"] = self.clip_g.tokenize_with_weights(text)
out["l"] = self.clip_l.tokenize_with_weights(text)
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text)
return out
class ClipTokenWeightEncoder:
def encode_token_weights(self, token_weight_pairs):
2024-06-16 13:13:23 +08:00
tokens = [a[0] for a in token_weight_pairs[0]]
out, pooled = self([tokens])
if pooled is not None:
first_pooled = pooled[0:1].cpu()
else:
first_pooled = pooled
output = [out[0:1]]
return torch.cat(output, dim=-2).cpu(), first_pooled
class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
"""Uses the CLIP transformer encoder for text (from huggingface)"""
LAYERS = ["last", "pooled", "hidden"]
def __init__(self, device="cpu", max_length=77, layer="last", layer_idx=None, textmodel_json_config=None, dtype=None, model_class=CLIPTextModel,
2024-06-16 13:13:23 +08:00
special_tokens=None, layer_norm_hidden_state=True, return_projected_pooled=True):
super().__init__()
assert layer in self.LAYERS
self.transformer = model_class(textmodel_json_config, dtype, device)
self.num_layers = self.transformer.num_layers
self.max_length = max_length
self.transformer = self.transformer.eval()
for param in self.parameters():
param.requires_grad = False
self.layer = layer
self.layer_idx = None
2024-06-16 13:13:23 +08:00
self.special_tokens = special_tokens if special_tokens is not None else {"start": 49406, "end": 49407, "pad": 49407}
self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
self.layer_norm_hidden_state = layer_norm_hidden_state
self.return_projected_pooled = return_projected_pooled
if layer == "hidden":
assert layer_idx is not None
assert abs(layer_idx) < self.num_layers
self.set_clip_options({"layer": layer_idx})
self.options_default = (self.layer, self.layer_idx, self.return_projected_pooled)
def set_clip_options(self, options):
layer_idx = options.get("layer", self.layer_idx)
self.return_projected_pooled = options.get("projected_pooled", self.return_projected_pooled)
if layer_idx is None or abs(layer_idx) > self.num_layers:
self.layer = "last"
else:
self.layer = "hidden"
self.layer_idx = layer_idx
def forward(self, tokens):
backup_embeds = self.transformer.get_input_embeddings()
tokens = torch.asarray(tokens, dtype=torch.int64, device=backup_embeds.weight.device)
outputs = self.transformer(tokens, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state)
self.transformer.set_input_embeddings(backup_embeds)
if self.layer == "last":
z = outputs[0]
else:
z = outputs[1]
pooled_output = None
if len(outputs) >= 3:
if not self.return_projected_pooled and len(outputs) >= 4 and outputs[3] is not None:
pooled_output = outputs[3].float()
elif outputs[2] is not None:
pooled_output = outputs[2].float()
return z.float(), pooled_output
class SDXLClipG(SDClipModel):
"""Wraps the CLIP-G model into the SD-CLIP-Model interface"""
def __init__(self, config, device="cpu", layer="penultimate", layer_idx=None, dtype=None):
if layer == "penultimate":
layer="hidden"
layer_idx=-2
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=config, dtype=dtype, special_tokens={"start": 49406, "end": 49407, "pad": 0}, layer_norm_hidden_state=False)
class T5XXLModel(SDClipModel):
"""Wraps the T5-XXL model into the SD-CLIP-Model interface for convenience"""
def __init__(self, config, device="cpu", layer="last", layer_idx=None, dtype=None):
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=T5)
#################################################################################################
### T5 implementation, for the T5-XXL text encoder portion, largely pulled from upstream impl
#################################################################################################
class T5XXLTokenizer(SDTokenizer):
"""Wraps the T5 Tokenizer from HF into the SDTokenizer interface"""
def __init__(self):
super().__init__(pad_with_end=False, tokenizer=T5TokenizerFast.from_pretrained("google/t5-v1_1-xxl"), has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=77)
class T5LayerNorm(torch.nn.Module):
def __init__(self, hidden_size, eps=1e-6, dtype=None, device=None):
super().__init__()
self.weight = torch.nn.Parameter(torch.ones(hidden_size, dtype=dtype, device=device))
self.variance_epsilon = eps
def forward(self, x):
variance = x.pow(2).mean(-1, keepdim=True)
x = x * torch.rsqrt(variance + self.variance_epsilon)
return self.weight.to(device=x.device, dtype=x.dtype) * x
class T5DenseGatedActDense(torch.nn.Module):
def __init__(self, model_dim, ff_dim, dtype, device):
super().__init__()
2024-06-24 14:06:10 +08:00
self.wi_0 = AutocastLinear(model_dim, ff_dim, bias=False, dtype=dtype, device=device)
self.wi_1 = AutocastLinear(model_dim, ff_dim, bias=False, dtype=dtype, device=device)
self.wo = AutocastLinear(ff_dim, model_dim, bias=False, dtype=dtype, device=device)
def forward(self, x):
hidden_gelu = torch.nn.functional.gelu(self.wi_0(x), approximate="tanh")
hidden_linear = self.wi_1(x)
x = hidden_gelu * hidden_linear
x = self.wo(x)
return x
class T5LayerFF(torch.nn.Module):
def __init__(self, model_dim, ff_dim, dtype, device):
super().__init__()
self.DenseReluDense = T5DenseGatedActDense(model_dim, ff_dim, dtype, device)
self.layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device)
def forward(self, x):
forwarded_states = self.layer_norm(x)
forwarded_states = self.DenseReluDense(forwarded_states)
x += forwarded_states
return x
class T5Attention(torch.nn.Module):
def __init__(self, model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device):
super().__init__()
# Mesh TensorFlow initialization to avoid scaling before softmax
2024-06-24 14:06:10 +08:00
self.q = AutocastLinear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.k = AutocastLinear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.v = AutocastLinear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.o = AutocastLinear(inner_dim, model_dim, bias=False, dtype=dtype, device=device)
self.num_heads = num_heads
self.relative_attention_bias = None
if relative_attention_bias:
self.relative_attention_num_buckets = 32
self.relative_attention_max_distance = 128
self.relative_attention_bias = torch.nn.Embedding(self.relative_attention_num_buckets, self.num_heads, device=device)
@staticmethod
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_position_if_large = torch.min(relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1))
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
def compute_bias(self, query_length, key_length, device):
"""Compute binned relative position bias"""
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
relative_position = memory_position - context_position # shape (query_length, key_length)
relative_position_bucket = self._relative_position_bucket(
relative_position, # shape (query_length, key_length)
bidirectional=True,
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
return values
def forward(self, x, past_bias=None):
q = self.q(x)
k = self.k(x)
v = self.v(x)
2024-06-24 14:06:10 +08:00
if self.relative_attention_bias is not None:
past_bias = self.compute_bias(x.shape[1], x.shape[1], x.device)
if past_bias is not None:
mask = past_bias
2024-06-24 14:06:10 +08:00
else:
mask = None
out = attention(q, k * ((k.shape[-1] / self.num_heads) ** 0.5), v, self.num_heads, mask.to(x.dtype) if mask is not None else None)
return self.o(out), past_bias
class T5LayerSelfAttention(torch.nn.Module):
def __init__(self, model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias, dtype, device):
super().__init__()
self.SelfAttention = T5Attention(model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device)
self.layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device)
def forward(self, x, past_bias=None):
output, past_bias = self.SelfAttention(self.layer_norm(x), past_bias=past_bias)
x += output
return x, past_bias
class T5Block(torch.nn.Module):
def __init__(self, model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias, dtype, device):
super().__init__()
self.layer = torch.nn.ModuleList()
self.layer.append(T5LayerSelfAttention(model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias, dtype, device))
self.layer.append(T5LayerFF(model_dim, ff_dim, dtype, device))
def forward(self, x, past_bias=None):
x, past_bias = self.layer[0](x, past_bias)
x = self.layer[-1](x)
return x, past_bias
class T5Stack(torch.nn.Module):
def __init__(self, num_layers, model_dim, inner_dim, ff_dim, num_heads, vocab_size, dtype, device):
super().__init__()
self.embed_tokens = torch.nn.Embedding(vocab_size, model_dim, device=device)
self.block = torch.nn.ModuleList([T5Block(model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias=(i == 0), dtype=dtype, device=device) for i in range(num_layers)])
self.final_layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device)
def forward(self, input_ids, intermediate_output=None, final_layer_norm_intermediate=True):
intermediate = None
x = self.embed_tokens(input_ids).to(torch.float32) # needs float32 or else T5 returns all zeroes
past_bias = None
2024-06-16 13:13:23 +08:00
for i, layer in enumerate(self.block):
x, past_bias = layer(x, past_bias)
if i == intermediate_output:
intermediate = x.clone()
x = self.final_layer_norm(x)
if intermediate is not None and final_layer_norm_intermediate:
intermediate = self.final_layer_norm(intermediate)
return x, intermediate
class T5(torch.nn.Module):
def __init__(self, config_dict, dtype, device):
super().__init__()
self.num_layers = config_dict["num_layers"]
self.encoder = T5Stack(self.num_layers, config_dict["d_model"], config_dict["d_model"], config_dict["d_ff"], config_dict["num_heads"], config_dict["vocab_size"], dtype, device)
self.dtype = dtype
def get_input_embeddings(self):
return self.encoder.embed_tokens
def set_input_embeddings(self, embeddings):
self.encoder.embed_tokens = embeddings
def forward(self, *args, **kwargs):
return self.encoder(*args, **kwargs)