mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-04 05:45:05 +08:00
101 lines
3.0 KiB
Python
101 lines
3.0 KiB
Python
|
"""RNG imitiating torch cuda randn on CPU. You are welcome.
|
|||
|
|
|||
|
Usage:
|
|||
|
|
|||
|
```
|
|||
|
g = Generator(seed=0)
|
|||
|
print(g.randn(shape=(3, 4)))
|
|||
|
```
|
|||
|
|
|||
|
Expected output:
|
|||
|
```
|
|||
|
[[-0.92466259 -0.42534415 -2.6438457 0.14518388]
|
|||
|
[-0.12086647 -0.57972564 -0.62285122 -0.32838709]
|
|||
|
[-1.07454231 -0.36314407 -1.67105067 2.26550497]]
|
|||
|
```
|
|||
|
"""
|
|||
|
|
|||
|
import numpy as np
|
|||
|
|
|||
|
philox_m = [0xD2511F53, 0xCD9E8D57]
|
|||
|
philox_w = [0x9E3779B9, 0xBB67AE85]
|
|||
|
|
|||
|
two_pow32_inv = np.array([2.3283064e-10], dtype=np.float32)
|
|||
|
two_pow32_inv_2pi = np.array([2.3283064e-10 * 6.2831855], dtype=np.float32)
|
|||
|
|
|||
|
|
|||
|
def uint32(x):
|
|||
|
"""Converts (N,) np.uint64 array into (2, N) np.unit32 array."""
|
|||
|
return np.moveaxis(x.view(np.uint32).reshape(-1, 2), 0, 1)
|
|||
|
|
|||
|
|
|||
|
def philox4_round(counter, key):
|
|||
|
"""A single round of the Philox 4x32 random number generator."""
|
|||
|
|
|||
|
v1 = uint32(counter[0].astype(np.uint64) * philox_m[0])
|
|||
|
v2 = uint32(counter[2].astype(np.uint64) * philox_m[1])
|
|||
|
|
|||
|
counter[0] = v2[1] ^ counter[1] ^ key[0]
|
|||
|
counter[1] = v2[0]
|
|||
|
counter[2] = v1[1] ^ counter[3] ^ key[1]
|
|||
|
counter[3] = v1[0]
|
|||
|
|
|||
|
|
|||
|
def philox4_32(counter, key, rounds=10):
|
|||
|
"""Generates 32-bit random numbers using the Philox 4x32 random number generator.
|
|||
|
|
|||
|
Parameters:
|
|||
|
counter (numpy.ndarray): A 4xN array of 32-bit integers representing the counter values (offset into generation).
|
|||
|
key (numpy.ndarray): A 2xN array of 32-bit integers representing the key values (seed).
|
|||
|
rounds (int): The number of rounds to perform.
|
|||
|
|
|||
|
Returns:
|
|||
|
numpy.ndarray: A 4xN array of 32-bit integers containing the generated random numbers.
|
|||
|
"""
|
|||
|
|
|||
|
for _ in range(rounds - 1):
|
|||
|
philox4_round(counter, key)
|
|||
|
|
|||
|
key[0] = key[0] + philox_w[0]
|
|||
|
key[1] = key[1] + philox_w[1]
|
|||
|
|
|||
|
philox4_round(counter, key)
|
|||
|
return counter
|
|||
|
|
|||
|
|
|||
|
def box_muller(x, y):
|
|||
|
"""Returns just the first out of two numbers generated by Box–Muller transform algorithm."""
|
|||
|
u = x.astype(np.float32) * two_pow32_inv + two_pow32_inv / 2
|
|||
|
v = y.astype(np.float32) * two_pow32_inv_2pi + two_pow32_inv_2pi / 2
|
|||
|
|
|||
|
s = np.sqrt(-2.0 * np.log(u))
|
|||
|
|
|||
|
r1 = s * np.sin(v)
|
|||
|
return r1.astype(np.float32)
|
|||
|
|
|||
|
|
|||
|
class Generator:
|
|||
|
"""RNG that produces same outputs as torch.randn(..., device='cuda') on CPU"""
|
|||
|
|
|||
|
def __init__(self, seed):
|
|||
|
self.seed = seed
|
|||
|
self.offset = 0
|
|||
|
|
|||
|
def randn(self, shape):
|
|||
|
"""Generate a sequence of n standard normal random variables using the Philox 4x32 random number generator and the Box-Muller transform."""
|
|||
|
|
|||
|
n = 1
|
|||
|
for x in shape:
|
|||
|
n *= x
|
|||
|
|
|||
|
counter = np.zeros((4, n), dtype=np.uint32)
|
|||
|
counter[0] = self.offset
|
|||
|
counter[2] = np.arange(n, dtype=np.uint32) # up to 2^32 numbers can be generated - if you want more you'd need to spill into counter[3]
|
|||
|
self.offset += 1
|
|||
|
|
|||
|
key = uint32(np.array([[self.seed] * n], dtype=np.uint64))
|
|||
|
|
|||
|
g = philox4_32(counter, key)
|
|||
|
|
|||
|
return box_muller(g[0], g[1]).reshape(shape) # discard g[2] and g[3]
|