diff --git a/.github/workflows/on_pull_request.yaml b/.github/workflows/on_pull_request.yaml index 5270cba4c..b097d1805 100644 --- a/.github/workflows/on_pull_request.yaml +++ b/.github/workflows/on_pull_request.yaml @@ -22,6 +22,12 @@ jobs: uses: actions/setup-python@v3 with: python-version: 3.10.6 + - uses: actions/cache@v2 + with: + path: ~/.cache/pip + key: ${{ runner.os }}-pip-${{ hashFiles('**/requirements.txt') }} + restore-keys: | + ${{ runner.os }}-pip- - name: Install PyLint run: | python -m pip install --upgrade pip diff --git a/artists.csv b/artists.csv index 99cdbdc60..1a61ed889 100644 --- a/artists.csv +++ b/artists.csv @@ -523,7 +523,6 @@ Affandi,0.7170285,nudity Diane Arbus,0.655138,digipa-high-impact Joseph Ducreux,0.65247905,digipa-high-impact Berthe Morisot,0.7165984,fineart -Hilma AF Klint,0.71643853,scribbles Hilma af Klint,0.71643853,scribbles Filippino Lippi,0.7163017,fineart Leonid Afremov,0.7163005,fineart @@ -738,14 +737,12 @@ Abraham Mignon,0.60605425,fineart Albert Bloch,0.69573116,nudity Charles Dana Gibson,0.67155975,fineart Alexandre-Évariste Fragonard,0.6507174,fineart -Alexandre-Évariste Fragonard,0.6507174,fineart Ernst Fuchs,0.6953538,nudity Alfredo Jaar,0.6952965,digipa-high-impact Judy Chicago,0.6952246,weird Frans van Mieris the Younger,0.6951849,fineart Aertgen van Leyden,0.6951305,fineart Emily Carr,0.69512105,fineart -Frances Macdonald,0.6950408,scribbles Frances MacDonald,0.6950408,scribbles Hannah Höch,0.69495845,scribbles Gillis Rombouts,0.58770025,fineart @@ -895,7 +892,6 @@ Richard McGuire,0.6820089,scribbles Anni Albers,0.65708244,digipa-high-impact Aleksey Savrasov,0.65207493,fineart Wayne Barlowe,0.6537874,fineart -Giorgio De Chirico,0.6815907,fineart Giorgio de Chirico,0.6815907,fineart Ernest Procter,0.6815795,fineart Adriaen Brouwer,0.6815058,fineart @@ -1241,7 +1237,6 @@ Betty Churcher,0.65387225,fineart Claes Corneliszoon Moeyaert,0.65386075,fineart David Bomberg,0.6537477,fineart Abraham Bosschaert,0.6535562,fineart -Giuseppe De Nittis,0.65354455,fineart Giuseppe de Nittis,0.65354455,fineart John La Farge,0.65342575,fineart Frits Thaulow,0.65341854,fineart @@ -1522,7 +1517,6 @@ Gertrude Harvey,0.5903887,fineart Grant Wood,0.6266253,fineart Fyodor Vasilyev,0.5234919,digipa-med-impact Cagnaccio di San Pietro,0.6261671,fineart -Cagnaccio Di San Pietro,0.6261671,fineart Doris Boulton-Maude,0.62593174,fineart Adolf Hirémy-Hirschl,0.5946784,fineart Harold von Schmidt,0.6256755,fineart @@ -2411,7 +2405,6 @@ Hermann Feierabend,0.5346168,digipa-high-impact Antonio Donghi,0.4610982,digipa-low-impact Adonna Khare,0.4858036,digipa-med-impact James Stokoe,0.5015107,digipa-med-impact -Art & Language,0.5341332,digipa-high-impact Agustín Fernández,0.53403986,fineart Germán Londoño,0.5338712,fineart Emmanuelle Moureaux,0.5335641,digipa-high-impact diff --git a/javascript/edit-attention.js b/javascript/edit-attention.js index 67084e7a6..c0d29a749 100644 --- a/javascript/edit-attention.js +++ b/javascript/edit-attention.js @@ -9,9 +9,38 @@ addEventListener('keydown', (event) => { let minus = "ArrowDown" if (event.key != plus && event.key != minus) return; - selectionStart = target.selectionStart; - selectionEnd = target.selectionEnd; - if(selectionStart == selectionEnd) return; + let selectionStart = target.selectionStart; + let selectionEnd = target.selectionEnd; + // If the user hasn't selected anything, let's select their current parenthesis block + if (selectionStart === selectionEnd) { + // Find opening parenthesis around current cursor + const before = target.value.substring(0, selectionStart); + let beforeParen = before.lastIndexOf("("); + if (beforeParen == -1) return; + let beforeParenClose = before.lastIndexOf(")"); + while (beforeParenClose !== -1 && beforeParenClose > beforeParen) { + beforeParen = before.lastIndexOf("(", beforeParen - 1); + beforeParenClose = before.lastIndexOf(")", beforeParenClose - 1); + } + + // Find closing parenthesis around current cursor + const after = target.value.substring(selectionStart); + let afterParen = after.indexOf(")"); + if (afterParen == -1) return; + let afterParenOpen = after.indexOf("("); + while (afterParenOpen !== -1 && afterParen > afterParenOpen) { + afterParen = after.indexOf(")", afterParen + 1); + afterParenOpen = after.indexOf("(", afterParenOpen + 1); + } + if (beforeParen === -1 || afterParen === -1) return; + + // Set the selection to the text between the parenthesis + const parenContent = target.value.substring(beforeParen + 1, selectionStart + afterParen); + const lastColon = parenContent.lastIndexOf(":"); + selectionStart = beforeParen + 1; + selectionEnd = selectionStart + lastColon; + target.setSelectionRange(selectionStart, selectionEnd); + } event.preventDefault(); diff --git a/javascript/imageMaskFix.js b/javascript/imageMaskFix.js index 3d77bfe9b..9fe7a6030 100644 --- a/javascript/imageMaskFix.js +++ b/javascript/imageMaskFix.js @@ -31,8 +31,8 @@ function imageMaskResize() { wrapper.style.width = `${wW}px`; wrapper.style.height = `${wH}px`; - wrapper.style.left = `${(w-wW)/2}px`; - wrapper.style.top = `${(h-wH)/2}px`; + wrapper.style.left = `0px`; + wrapper.style.top = `0px`; canvases.forEach( c => { c.style.width = c.style.height = ''; @@ -42,4 +42,4 @@ function imageMaskResize() { }); } - onUiUpdate(() => imageMaskResize()); \ No newline at end of file + onUiUpdate(() => imageMaskResize()); diff --git a/javascript/imageviewer.js b/javascript/imageviewer.js index 65a33dd78..9e380c653 100644 --- a/javascript/imageviewer.js +++ b/javascript/imageviewer.js @@ -31,7 +31,7 @@ function updateOnBackgroundChange() { } }) - if (modalImage.src != currentButton.children[0].src) { + if (currentButton?.children?.length > 0 && modalImage.src != currentButton.children[0].src) { modalImage.src = currentButton.children[0].src; if (modalImage.style.display === 'none') { modal.style.setProperty('background-image', `url(${modalImage.src})`) @@ -116,6 +116,7 @@ function showGalleryImage() { e.dataset.modded = true; if(e && e.parentElement.tagName == 'DIV'){ e.style.cursor='pointer' + e.style.userSelect='none' e.addEventListener('click', function (evt) { if(!opts.js_modal_lightbox) return; modalZoomSet(gradioApp().getElementById('modalImage'), opts.js_modal_lightbox_initially_zoomed) diff --git a/javascript/localization.js b/javascript/localization.js new file mode 100644 index 000000000..e66446357 --- /dev/null +++ b/javascript/localization.js @@ -0,0 +1,146 @@ + +// localization = {} -- the dict with translations is created by the backend + +ignore_ids_for_localization={ + setting_sd_hypernetwork: 'OPTION', + setting_sd_model_checkpoint: 'OPTION', + setting_realesrgan_enabled_models: 'OPTION', + modelmerger_primary_model_name: 'OPTION', + modelmerger_secondary_model_name: 'OPTION', + modelmerger_tertiary_model_name: 'OPTION', + train_embedding: 'OPTION', + train_hypernetwork: 'OPTION', + txt2img_style_index: 'OPTION', + txt2img_style2_index: 'OPTION', + img2img_style_index: 'OPTION', + img2img_style2_index: 'OPTION', + setting_random_artist_categories: 'SPAN', + setting_face_restoration_model: 'SPAN', + setting_realesrgan_enabled_models: 'SPAN', + extras_upscaler_1: 'SPAN', + extras_upscaler_2: 'SPAN', +} + +re_num = /^[\.\d]+$/ +re_emoji = /[\p{Extended_Pictographic}\u{1F3FB}-\u{1F3FF}\u{1F9B0}-\u{1F9B3}]/u + +original_lines = {} +translated_lines = {} + +function textNodesUnder(el){ + var n, a=[], walk=document.createTreeWalker(el,NodeFilter.SHOW_TEXT,null,false); + while(n=walk.nextNode()) a.push(n); + return a; +} + +function canBeTranslated(node, text){ + if(! text) return false; + if(! node.parentElement) return false; + + parentType = node.parentElement.nodeName + if(parentType=='SCRIPT' || parentType=='STYLE' || parentType=='TEXTAREA') return false; + + if (parentType=='OPTION' || parentType=='SPAN'){ + pnode = node + for(var level=0; level<4; level++){ + pnode = pnode.parentElement + if(! pnode) break; + + if(ignore_ids_for_localization[pnode.id] == parentType) return false; + } + } + + if(re_num.test(text)) return false; + if(re_emoji.test(text)) return false; + return true +} + +function getTranslation(text){ + if(! text) return undefined + + if(translated_lines[text] === undefined){ + original_lines[text] = 1 + } + + tl = localization[text] + if(tl !== undefined){ + translated_lines[tl] = 1 + } + + return tl +} + +function processTextNode(node){ + text = node.textContent.trim() + + if(! canBeTranslated(node, text)) return + + tl = getTranslation(text) + if(tl !== undefined){ + node.textContent = tl + } +} + +function processNode(node){ + if(node.nodeType == 3){ + processTextNode(node) + return + } + + if(node.title){ + tl = getTranslation(node.title) + if(tl !== undefined){ + node.title = tl + } + } + + if(node.placeholder){ + tl = getTranslation(node.placeholder) + if(tl !== undefined){ + node.placeholder = tl + } + } + + textNodesUnder(node).forEach(function(node){ + processTextNode(node) + }) +} + +function dumpTranslations(){ + dumped = {} + + Object.keys(original_lines).forEach(function(text){ + if(dumped[text] !== undefined) return + + dumped[text] = localization[text] || text + }) + + return dumped +} + +onUiUpdate(function(m){ + m.forEach(function(mutation){ + mutation.addedNodes.forEach(function(node){ + processNode(node) + }) + }); +}) + + +document.addEventListener("DOMContentLoaded", function() { + processNode(gradioApp()) +}) + +function download_localization() { + text = JSON.stringify(dumpTranslations(), null, 4) + + var element = document.createElement('a'); + element.setAttribute('href', 'data:text/plain;charset=utf-8,' + encodeURIComponent(text)); + element.setAttribute('download', "localization.json"); + element.style.display = 'none'; + document.body.appendChild(element); + + element.click(); + + document.body.removeChild(element); +} diff --git a/javascript/progressbar.js b/javascript/progressbar.js index 076f0a973..7a05726e7 100644 --- a/javascript/progressbar.js +++ b/javascript/progressbar.js @@ -34,7 +34,7 @@ function check_progressbar(id_part, id_progressbar, id_progressbar_span, id_skip preview.style.height = gallery.clientHeight + "px" //only watch gallery if there is a generation process going on - check_gallery(id_gallery); + check_gallery(id_gallery); var progressDiv = gradioApp().querySelectorAll('#' + id_progressbar_span).length > 0; if(!progressDiv){ @@ -72,9 +72,17 @@ function check_gallery(id_gallery){ let galleryButtons = gradioApp().querySelectorAll('#'+id_gallery+' .gallery-item') let galleryBtnSelected = gradioApp().querySelector('#'+id_gallery+' .gallery-item.\\!ring-2') if (prevSelectedIndex !== -1 && galleryButtons.length>prevSelectedIndex && !galleryBtnSelected) { - //automatically re-open previously selected index (if exists) + // automatically re-open previously selected index (if exists) + activeElement = gradioApp().activeElement; + galleryButtons[prevSelectedIndex].click(); - showGalleryImage(); + showGalleryImage(); + + if(activeElement){ + // i fought this for about an hour; i don't know why the focus is lost or why this helps recover it + // if somenoe has a better solution please by all means + setTimeout(function() { activeElement.focus() }, 1); + } } }) galleryObservers[id_gallery].observe( gallery, { childList:true, subtree:false }) diff --git a/javascript/ui.js b/javascript/ui.js index 9e1bed4cb..cfd0dcd39 100644 --- a/javascript/ui.js +++ b/javascript/ui.js @@ -1,5 +1,12 @@ // various functions for interation with ui.py not large enough to warrant putting them in separate files +function set_theme(theme){ + gradioURL = window.location.href + if (!gradioURL.includes('?__theme=')) { + window.location.replace(gradioURL + '?__theme=' + theme); + } +} + function selected_gallery_index(){ var buttons = gradioApp().querySelectorAll('[style="display: block;"].tabitem .gallery-item') var button = gradioApp().querySelector('[style="display: block;"].tabitem .gallery-item.\\!ring-2') diff --git a/launch.py b/launch.py index 2e6b33699..7b15e78e5 100644 --- a/launch.py +++ b/launch.py @@ -86,7 +86,24 @@ def git_clone(url, dir, name, commithash=None): if commithash is not None: run(f'"{git}" -C {dir} checkout {commithash}', None, "Couldn't checkout {name}'s hash: {commithash}") + +def version_check(commit): + try: + import requests + commits = requests.get('https://api.github.com/repos/AUTOMATIC1111/stable-diffusion-webui/branches/master').json() + if commit != "" and commits['commit']['sha'] != commit: + print("--------------------------------------------------------") + print("| You are not up to date with the most recent release. |") + print("| Consider running `git pull` to update. |") + print("--------------------------------------------------------") + elif commits['commit']['sha'] == commit: + print("You are up to date with the most recent release.") + else: + print("Not a git clone, can't perform version check.") + except Exception as e: + print("versipm check failed",e) + def prepare_enviroment(): torch_command = os.environ.get('TORCH_COMMAND', "pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113") requirements_file = os.environ.get('REQS_FILE', "requirements_versions.txt") @@ -94,6 +111,15 @@ def prepare_enviroment(): gfpgan_package = os.environ.get('GFPGAN_PACKAGE', "git+https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379") clip_package = os.environ.get('CLIP_PACKAGE', "git+https://github.com/openai/CLIP.git@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1") + deepdanbooru_package = os.environ.get('DEEPDANBOORU_PACKAGE', "git+https://github.com/KichangKim/DeepDanbooru.git@edf73df4cdaeea2cf00e9ac08bd8a9026b7a7b26") + + xformers_windows_package = os.environ.get('XFORMERS_WINDOWS_PACKAGE', 'https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/f/xformers-0.0.14.dev0-cp310-cp310-win_amd64.whl') + + stable_diffusion_repo = os.environ.get('STABLE_DIFFUSION_REPO', "https://github.com/CompVis/stable-diffusion.git") + taming_transformers_repo = os.environ.get('TAMING_REANSFORMERS_REPO', "https://github.com/CompVis/taming-transformers.git") + k_diffusion_repo = os.environ.get('K_DIFFUSION_REPO', 'https://github.com/crowsonkb/k-diffusion.git') + codeformer_repo = os.environ.get('CODEFORMET_REPO', 'https://github.com/sczhou/CodeFormer.git') + blip_repo = os.environ.get('BLIP_REPO', 'https://github.com/salesforce/BLIP.git') stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "69ae4b35e0a0f6ee1af8bb9a5d0016ccb27e36dc") taming_transformers_commit_hash = os.environ.get('TAMING_TRANSFORMERS_COMMIT_HASH', "24268930bf1dce879235a7fddd0b2355b84d7ea6") @@ -101,13 +127,14 @@ def prepare_enviroment(): codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af") blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9") - args = shlex.split(commandline_args) + sys.argv += shlex.split(commandline_args) - args, skip_torch_cuda_test = extract_arg(args, '--skip-torch-cuda-test') - args, reinstall_xformers = extract_arg(args, '--reinstall-xformers') - xformers = '--xformers' in args - deepdanbooru = '--deepdanbooru' in args - ngrok = '--ngrok' in args + sys.argv, skip_torch_cuda_test = extract_arg(sys.argv, '--skip-torch-cuda-test') + sys.argv, reinstall_xformers = extract_arg(sys.argv, '--reinstall-xformers') + sys.argv, update_check = extract_arg(sys.argv, '--update-check') + xformers = '--xformers' in sys.argv + deepdanbooru = '--deepdanbooru' in sys.argv + ngrok = '--ngrok' in sys.argv try: commit = run(f"{git} rev-parse HEAD").strip() @@ -116,7 +143,7 @@ def prepare_enviroment(): print(f"Python {sys.version}") print(f"Commit hash: {commit}") - + if not is_installed("torch") or not is_installed("torchvision"): run(f'"{python}" -m {torch_command}', "Installing torch and torchvision", "Couldn't install torch") @@ -131,32 +158,33 @@ def prepare_enviroment(): if (not is_installed("xformers") or reinstall_xformers) and xformers and platform.python_version().startswith("3.10"): if platform.system() == "Windows": - run_pip("install -U -I --no-deps https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/f/xformers-0.0.14.dev0-cp310-cp310-win_amd64.whl", "xformers") + run_pip(f"install -U -I --no-deps {xformers_windows_package}", "xformers") elif platform.system() == "Linux": run_pip("install xformers", "xformers") if not is_installed("deepdanbooru") and deepdanbooru: - run_pip("install git+https://github.com/KichangKim/DeepDanbooru.git@edf73df4cdaeea2cf00e9ac08bd8a9026b7a7b26#egg=deepdanbooru[tensorflow] tensorflow==2.10.0 tensorflow-io==0.27.0", "deepdanbooru") + run_pip(f"install {deepdanbooru_package}#egg=deepdanbooru[tensorflow] tensorflow==2.10.0 tensorflow-io==0.27.0", "deepdanbooru") if not is_installed("pyngrok") and ngrok: run_pip("install pyngrok", "ngrok") os.makedirs(dir_repos, exist_ok=True) - git_clone("https://github.com/CompVis/stable-diffusion.git", repo_dir('stable-diffusion'), "Stable Diffusion", stable_diffusion_commit_hash) - git_clone("https://github.com/CompVis/taming-transformers.git", repo_dir('taming-transformers'), "Taming Transformers", taming_transformers_commit_hash) - git_clone("https://github.com/crowsonkb/k-diffusion.git", repo_dir('k-diffusion'), "K-diffusion", k_diffusion_commit_hash) - git_clone("https://github.com/sczhou/CodeFormer.git", repo_dir('CodeFormer'), "CodeFormer", codeformer_commit_hash) - git_clone("https://github.com/salesforce/BLIP.git", repo_dir('BLIP'), "BLIP", blip_commit_hash) + git_clone(stable_diffusion_repo, repo_dir('stable-diffusion'), "Stable Diffusion", stable_diffusion_commit_hash) + git_clone(taming_transformers_repo, repo_dir('taming-transformers'), "Taming Transformers", taming_transformers_commit_hash) + git_clone(k_diffusion_repo, repo_dir('k-diffusion'), "K-diffusion", k_diffusion_commit_hash) + git_clone(codeformer_repo, repo_dir('CodeFormer'), "CodeFormer", codeformer_commit_hash) + git_clone(blip_repo, repo_dir('BLIP'), "BLIP", blip_commit_hash) if not is_installed("lpips"): run_pip(f"install -r {os.path.join(repo_dir('CodeFormer'), 'requirements.txt')}", "requirements for CodeFormer") run_pip(f"install -r {requirements_file}", "requirements for Web UI") - sys.argv += args - - if "--exit" in args: + if update_check: + version_check(commit) + + if "--exit" in sys.argv: print("Exiting because of --exit argument") exit(0) diff --git a/localizations/Put localization files here.txt b/localizations/Put localization files here.txt new file mode 100644 index 000000000..e69de29bb diff --git a/modules/api/api.py b/modules/api/api.py new file mode 100644 index 000000000..5b0c934e7 --- /dev/null +++ b/modules/api/api.py @@ -0,0 +1,68 @@ +from modules.api.processing import StableDiffusionProcessingAPI +from modules.processing import StableDiffusionProcessingTxt2Img, process_images +from modules.sd_samplers import all_samplers +from modules.extras import run_pnginfo +import modules.shared as shared +import uvicorn +from fastapi import Body, APIRouter, HTTPException +from fastapi.responses import JSONResponse +from pydantic import BaseModel, Field, Json +import json +import io +import base64 + +sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None) + +class TextToImageResponse(BaseModel): + images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.") + parameters: Json + info: Json + + +class Api: + def __init__(self, app, queue_lock): + self.router = APIRouter() + self.app = app + self.queue_lock = queue_lock + self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"]) + + def text2imgapi(self, txt2imgreq: StableDiffusionProcessingAPI ): + sampler_index = sampler_to_index(txt2imgreq.sampler_index) + + if sampler_index is None: + raise HTTPException(status_code=404, detail="Sampler not found") + + populate = txt2imgreq.copy(update={ # Override __init__ params + "sd_model": shared.sd_model, + "sampler_index": sampler_index[0], + "do_not_save_samples": True, + "do_not_save_grid": True + } + ) + p = StableDiffusionProcessingTxt2Img(**vars(populate)) + # Override object param + with self.queue_lock: + processed = process_images(p) + + b64images = [] + for i in processed.images: + buffer = io.BytesIO() + i.save(buffer, format="png") + b64images.append(base64.b64encode(buffer.getvalue())) + + return TextToImageResponse(images=b64images, parameters=json.dumps(vars(txt2imgreq)), info=json.dumps(processed.info)) + + + + def img2imgapi(self): + raise NotImplementedError + + def extrasapi(self): + raise NotImplementedError + + def pnginfoapi(self): + raise NotImplementedError + + def launch(self, server_name, port): + self.app.include_router(self.router) + uvicorn.run(self.app, host=server_name, port=port) diff --git a/modules/api/processing.py b/modules/api/processing.py new file mode 100644 index 000000000..4c5412410 --- /dev/null +++ b/modules/api/processing.py @@ -0,0 +1,99 @@ +from inflection import underscore +from typing import Any, Dict, Optional +from pydantic import BaseModel, Field, create_model +from modules.processing import StableDiffusionProcessingTxt2Img +import inspect + + +API_NOT_ALLOWED = [ + "self", + "kwargs", + "sd_model", + "outpath_samples", + "outpath_grids", + "sampler_index", + "do_not_save_samples", + "do_not_save_grid", + "extra_generation_params", + "overlay_images", + "do_not_reload_embeddings", + "seed_enable_extras", + "prompt_for_display", + "sampler_noise_scheduler_override", + "ddim_discretize" +] + +class ModelDef(BaseModel): + """Assistance Class for Pydantic Dynamic Model Generation""" + + field: str + field_alias: str + field_type: Any + field_value: Any + + +class PydanticModelGenerator: + """ + Takes in created classes and stubs them out in a way FastAPI/Pydantic is happy about: + source_data is a snapshot of the default values produced by the class + params are the names of the actual keys required by __init__ + """ + + def __init__( + self, + model_name: str = None, + class_instance = None, + additional_fields = None, + ): + def field_type_generator(k, v): + # field_type = str if not overrides.get(k) else overrides[k]["type"] + # print(k, v.annotation, v.default) + field_type = v.annotation + + return Optional[field_type] + + def merge_class_params(class_): + all_classes = list(filter(lambda x: x is not object, inspect.getmro(class_))) + parameters = {} + for classes in all_classes: + parameters = {**parameters, **inspect.signature(classes.__init__).parameters} + return parameters + + + self._model_name = model_name + self._class_data = merge_class_params(class_instance) + self._model_def = [ + ModelDef( + field=underscore(k), + field_alias=k, + field_type=field_type_generator(k, v), + field_value=v.default + ) + for (k,v) in self._class_data.items() if k not in API_NOT_ALLOWED + ] + + for fields in additional_fields: + self._model_def.append(ModelDef( + field=underscore(fields["key"]), + field_alias=fields["key"], + field_type=fields["type"], + field_value=fields["default"])) + + def generate_model(self): + """ + Creates a pydantic BaseModel + from the json and overrides provided at initialization + """ + fields = { + d.field: (d.field_type, Field(default=d.field_value, alias=d.field_alias)) for d in self._model_def + } + DynamicModel = create_model(self._model_name, **fields) + DynamicModel.__config__.allow_population_by_field_name = True + DynamicModel.__config__.allow_mutation = True + return DynamicModel + +StableDiffusionProcessingAPI = PydanticModelGenerator( + "StableDiffusionProcessingTxt2Img", + StableDiffusionProcessingTxt2Img, + [{"key": "sampler_index", "type": str, "default": "Euler"}] +).generate_model() \ No newline at end of file diff --git a/modules/deepbooru.py b/modules/deepbooru.py index 4ad334a12..8914662d9 100644 --- a/modules/deepbooru.py +++ b/modules/deepbooru.py @@ -157,8 +157,7 @@ def get_deepbooru_tags_from_model(model, tags, pil_image, threshold, deepbooru_o # sort by reverse by likelihood and normal for alpha, and format tag text as requested unsorted_tags_in_theshold.sort(key=lambda y: y[sort_ndx], reverse=(not alpha_sort)) for weight, tag in unsorted_tags_in_theshold: - # note: tag_outformat will still have a colon if include_ranks is True - tag_outformat = tag.replace(':', ' ') + tag_outformat = tag if use_spaces: tag_outformat = tag_outformat.replace('_', ' ') if use_escape: diff --git a/modules/extras.py b/modules/extras.py index f2f5a7b04..b853fa5b2 100644 --- a/modules/extras.py +++ b/modules/extras.py @@ -20,26 +20,40 @@ import gradio as gr cached_images = {} -def run_extras(extras_mode, resize_mode, image, image_folder, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility): +def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility): devices.torch_gc() imageArr = [] # Also keep track of original file names imageNameArr = [] - + outputs = [] + if extras_mode == 1: #convert file to pillow image for img in image_folder: image = Image.open(img) imageArr.append(image) imageNameArr.append(os.path.splitext(img.orig_name)[0]) + elif extras_mode == 2: + assert not shared.cmd_opts.hide_ui_dir_config, '--hide-ui-dir-config option must be disabled' + + if input_dir == '': + return outputs, "Please select an input directory.", '' + image_list = [file for file in [os.path.join(input_dir, x) for x in os.listdir(input_dir)] if os.path.isfile(file)] + for img in image_list: + image = Image.open(img) + imageArr.append(image) + imageNameArr.append(img) else: imageArr.append(image) imageNameArr.append(None) - outpath = opts.outdir_samples or opts.outdir_extras_samples + if extras_mode == 2 and output_dir != '': + outpath = output_dir + else: + outpath = opts.outdir_samples or opts.outdir_extras_samples - outputs = [] + for image, image_name in zip(imageArr, imageNameArr): if image is None: return outputs, "Please select an input image.", '' @@ -77,7 +91,8 @@ def run_extras(extras_mode, resize_mode, image, image_folder, gfpgan_visibility, def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop): small = image.crop((image.width // 2, image.height // 2, image.width // 2 + 10, image.height // 2 + 10)) pixels = tuple(np.array(small).flatten().tolist()) - key = (resize, scaler_index, image.width, image.height, gfpgan_visibility, codeformer_visibility, codeformer_weight) + pixels + key = (resize, scaler_index, image.width, image.height, gfpgan_visibility, codeformer_visibility, codeformer_weight, + resize_mode, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop) + pixels c = cached_images.get(key) if c is None: @@ -112,7 +127,8 @@ def run_extras(extras_mode, resize_mode, image, image_folder, gfpgan_visibility, image.info = existing_pnginfo image.info["extras"] = info - outputs.append(image) + if extras_mode != 2 or show_extras_results : + outputs.append(image) devices.torch_gc() @@ -160,11 +176,14 @@ def run_pnginfo(image): def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_name, interp_method, multiplier, save_as_half, custom_name): - def weighted_sum(theta0, theta1, theta2, alpha): + def weighted_sum(theta0, theta1, alpha): return ((1 - alpha) * theta0) + (alpha * theta1) - def add_difference(theta0, theta1, theta2, alpha): - return theta0 + (theta1 - theta2) * alpha + def get_difference(theta1, theta2): + return theta1 - theta2 + + def add_difference(theta0, theta1_2_diff, alpha): + return theta0 + (alpha * theta1_2_diff) primary_model_info = sd_models.checkpoints_list[primary_model_name] secondary_model_info = sd_models.checkpoints_list[secondary_model_name] @@ -183,23 +202,31 @@ def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_nam teritary_model = torch.load(teritary_model_info.filename, map_location='cpu') theta_2 = sd_models.get_state_dict_from_checkpoint(teritary_model) else: + teritary_model = None theta_2 = None theta_funcs = { - "Weighted sum": weighted_sum, - "Add difference": add_difference, + "Weighted sum": (None, weighted_sum), + "Add difference": (get_difference, add_difference), } - theta_func = theta_funcs[interp_method] + theta_func1, theta_func2 = theta_funcs[interp_method] print(f"Merging...") + if theta_func1: + for key in tqdm.tqdm(theta_1.keys()): + if 'model' in key: + if key in theta_2: + t2 = theta_2.get(key, torch.zeros_like(theta_1[key])) + theta_1[key] = theta_func1(theta_1[key], t2) + else: + theta_1[key] = torch.zeros_like(theta_1[key]) + del theta_2, teritary_model + for key in tqdm.tqdm(theta_0.keys()): if 'model' in key and key in theta_1: - t2 = (theta_2 or {}).get(key) - if t2 is None: - t2 = torch.zeros_like(theta_0[key]) - theta_0[key] = theta_func(theta_0[key], theta_1[key], t2, multiplier) + theta_0[key] = theta_func2(theta_0[key], theta_1[key], multiplier) if save_as_half: theta_0[key] = theta_0[key].half() diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 4905710e5..b8695fc15 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -196,7 +196,7 @@ def stack_conds(conds): return torch.stack(conds) -def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): +def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): assert hypernetwork_name, 'hypernetwork not selected' path = shared.hypernetworks.get(hypernetwork_name, None) @@ -225,7 +225,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." with torch.autocast("cuda"): - ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size) + ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size) if unload: shared.sd_model.cond_stage_model.to(devices.cpu) diff --git a/modules/images_history.py b/modules/images_history.py index 9260df8a8..46b23e569 100644 --- a/modules/images_history.py +++ b/modules/images_history.py @@ -1,6 +1,6 @@ import os import shutil - +import sys def traverse_all_files(output_dir, image_list, curr_dir=None): curr_path = output_dir if curr_dir is None else os.path.join(output_dir, curr_dir) @@ -24,10 +24,14 @@ def traverse_all_files(output_dir, image_list, curr_dir=None): def get_recent_images(dir_name, page_index, step, image_index, tabname): page_index = int(page_index) - f_list = os.listdir(dir_name) image_list = [] - image_list = traverse_all_files(dir_name, image_list) - image_list = sorted(image_list, key=lambda file: -os.path.getctime(os.path.join(dir_name, file))) + if not os.path.exists(dir_name): + pass + elif os.path.isdir(dir_name): + image_list = traverse_all_files(dir_name, image_list) + image_list = sorted(image_list, key=lambda file: -os.path.getctime(os.path.join(dir_name, file))) + else: + print(f'ERROR: "{dir_name}" is not a directory. Check the path in the settings.', file=sys.stderr) num = 48 if tabname != "extras" else 12 max_page_index = len(image_list) // num + 1 page_index = max_page_index if page_index == -1 else page_index + step @@ -105,10 +109,8 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict): dir_name = opts.outdir_img2img_samples elif tabname == "extras": dir_name = opts.outdir_extras_samples - d = dir_name.split("/") - dir_name = "/" if dir_name.startswith("/") else d[0] - for p in d[1:]: - dir_name = os.path.join(dir_name, p) + else: + return with gr.Row(): renew_page = gr.Button('Renew Page', elem_id=tabname + "_images_history_renew_page") first_page = gr.Button('First Page') diff --git a/modules/interrogate.py b/modules/interrogate.py index 9263d65a6..64b91eb46 100644 --- a/modules/interrogate.py +++ b/modules/interrogate.py @@ -123,7 +123,7 @@ class InterrogateModels: return caption[0] - def interrogate(self, pil_image, include_ranks=False): + def interrogate(self, pil_image): res = None try: @@ -156,10 +156,10 @@ class InterrogateModels: for name, topn, items in self.categories: matches = self.rank(image_features, items, top_count=topn) for match, score in matches: - if include_ranks: - res += ", " + match + if shared.opts.interrogate_return_ranks: + res += f", ({match}:{score/100:.3f})" else: - res += f", ({match}:{score})" + res += ", " + match except Exception: print(f"Error interrogating", file=sys.stderr) diff --git a/modules/localization.py b/modules/localization.py new file mode 100644 index 000000000..b1810cda2 --- /dev/null +++ b/modules/localization.py @@ -0,0 +1,31 @@ +import json +import os +import sys +import traceback + +localizations = {} + + +def list_localizations(dirname): + localizations.clear() + + for file in os.listdir(dirname): + fn, ext = os.path.splitext(file) + if ext.lower() != ".json": + continue + + localizations[fn] = os.path.join(dirname, file) + + +def localization_js(current_localization_name): + fn = localizations.get(current_localization_name, None) + data = {} + if fn is not None: + try: + with open(fn, "r", encoding="utf8") as file: + data = json.load(file) + except Exception: + print(f"Error loading localization from {fn}:", file=sys.stderr) + print(traceback.format_exc(), file=sys.stderr) + + return f"var localization = {json.dumps(data)}\n" diff --git a/modules/ngrok.py b/modules/ngrok.py index 7d03a6df5..5c5f349aa 100644 --- a/modules/ngrok.py +++ b/modules/ngrok.py @@ -1,12 +1,14 @@ from pyngrok import ngrok, conf, exception -def connect(token, port): +def connect(token, port, region): if token == None: token = 'None' - conf.get_default().auth_token = token + config = conf.PyngrokConfig( + auth_token=token, region=region + ) try: - public_url = ngrok.connect(port).public_url + public_url = ngrok.connect(port, pyngrok_config=config).public_url except exception.PyngrokNgrokError: print(f'Invalid ngrok authtoken, ngrok connection aborted.\n' f'Your token: {token}, get the right one on https://dashboard.ngrok.com/get-started/your-authtoken') diff --git a/modules/processing.py b/modules/processing.py index 941ae0893..ea926fc32 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -9,6 +9,7 @@ from PIL import Image, ImageFilter, ImageOps import random import cv2 from skimage import exposure +from typing import Any, Dict, List, Optional import modules.sd_hijack from modules import devices, prompt_parser, masking, sd_samplers, lowvram @@ -51,9 +52,15 @@ def get_correct_sampler(p): return sd_samplers.samplers elif isinstance(p, modules.processing.StableDiffusionProcessingImg2Img): return sd_samplers.samplers_for_img2img + elif isinstance(p, modules.api.processing.StableDiffusionProcessingAPI): + return sd_samplers.samplers -class StableDiffusionProcessing: - def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt="", styles=None, seed=-1, subseed=-1, subseed_strength=0, seed_resize_from_h=-1, seed_resize_from_w=-1, seed_enable_extras=True, sampler_index=0, batch_size=1, n_iter=1, steps=50, cfg_scale=7.0, width=512, height=512, restore_faces=False, tiling=False, do_not_save_samples=False, do_not_save_grid=False, extra_generation_params=None, overlay_images=None, negative_prompt=None, eta=None): +class StableDiffusionProcessing(): + """ + The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing + + """ + def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str="", styles: List[str]=None, seed: int=-1, subseed: int=-1, subseed_strength: float=0, seed_resize_from_h: int=-1, seed_resize_from_w: int=-1, seed_enable_extras: bool=True, sampler_index: int=0, batch_size: int=1, n_iter: int=1, steps:int =50, cfg_scale:float=7.0, width:int=512, height:int=512, restore_faces:bool=False, tiling:bool=False, do_not_save_samples:bool=False, do_not_save_grid:bool=False, extra_generation_params: Dict[Any,Any]=None, overlay_images: Any=None, negative_prompt: str=None, eta: float =None, do_not_reload_embeddings: bool=False, denoising_strength: float = 0, ddim_discretize: str = "uniform", s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0): self.sd_model = sd_model self.outpath_samples: str = outpath_samples self.outpath_grids: str = outpath_grids @@ -80,15 +87,16 @@ class StableDiffusionProcessing: self.extra_generation_params: dict = extra_generation_params or {} self.overlay_images = overlay_images self.eta = eta + self.do_not_reload_embeddings = do_not_reload_embeddings self.paste_to = None self.color_corrections = None self.denoising_strength: float = 0 self.sampler_noise_scheduler_override = None self.ddim_discretize = opts.ddim_discretize - self.s_churn = opts.s_churn - self.s_tmin = opts.s_tmin - self.s_tmax = float('inf') # not representable as a standard ui option - self.s_noise = opts.s_noise + self.s_churn = s_churn or opts.s_churn + self.s_tmin = s_tmin or opts.s_tmin + self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option + self.s_noise = s_noise or opts.s_noise if not seed_enable_extras: self.subseed = -1 @@ -96,6 +104,7 @@ class StableDiffusionProcessing: self.seed_resize_from_h = 0 self.seed_resize_from_w = 0 + def init(self, all_prompts, all_seeds, all_subseeds): pass @@ -333,12 +342,6 @@ def process_images(p: StableDiffusionProcessing) -> Processed: seed = get_fixed_seed(p.seed) subseed = get_fixed_seed(p.subseed) - if p.outpath_samples is not None: - os.makedirs(p.outpath_samples, exist_ok=True) - - if p.outpath_grids is not None: - os.makedirs(p.outpath_grids, exist_ok=True) - modules.sd_hijack.model_hijack.apply_circular(p.tiling) modules.sd_hijack.model_hijack.clear_comments() @@ -364,7 +367,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed: def infotext(iteration=0, position_in_batch=0): return create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration, position_in_batch) - if os.path.exists(cmd_opts.embeddings_dir): + if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings: model_hijack.embedding_db.load_textual_inversion_embeddings() infotexts = [] @@ -407,12 +410,6 @@ def process_images(p: StableDiffusionProcessing) -> Processed: with devices.autocast(): samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength) - if state.interrupted or state.skipped: - - # if we are interrupted, sample returns just noise - # use the image collected previously in sampler loop - samples_ddim = shared.state.current_latent - samples_ddim = samples_ddim.to(devices.dtype_vae) x_samples_ddim = decode_first_stage(p.sd_model, samples_ddim) x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) @@ -502,7 +499,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed: class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): sampler = None - def __init__(self, enable_hr=False, denoising_strength=0.75, firstphase_width=0, firstphase_height=0, **kwargs): + def __init__(self, enable_hr: bool=False, denoising_strength: float=0.75, firstphase_width: int=0, firstphase_height: int=0, **kwargs): super().__init__(**kwargs) self.enable_hr = enable_hr self.denoising_strength = denoising_strength @@ -728,4 +725,4 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): del x devices.torch_gc() - return samples + return samples \ No newline at end of file diff --git a/modules/scripts.py b/modules/scripts.py index 45230f9a1..1039fa9cd 100644 --- a/modules/scripts.py +++ b/modules/scripts.py @@ -58,6 +58,9 @@ def load_scripts(basedir): for filename in sorted(os.listdir(basedir)): path = os.path.join(basedir, filename) + if os.path.splitext(path)[1].lower() != '.py': + continue + if not os.path.isfile(path): continue @@ -93,6 +96,7 @@ def wrap_call(func, filename, funcname, *args, default=None, **kwargs): class ScriptRunner: def __init__(self): self.scripts = [] + self.titles = [] def setup_ui(self, is_img2img): for script_class, path in scripts_data: @@ -104,9 +108,10 @@ class ScriptRunner: self.scripts.append(script) - titles = [wrap_call(script.title, script.filename, "title") or f"{script.filename} [error]" for script in self.scripts] + self.titles = [wrap_call(script.title, script.filename, "title") or f"{script.filename} [error]" for script in self.scripts] - dropdown = gr.Dropdown(label="Script", choices=["None"] + titles, value="None", type="index") + dropdown = gr.Dropdown(label="Script", choices=["None"] + self.titles, value="None", type="index") + dropdown.save_to_config = True inputs = [dropdown] for script in self.scripts: @@ -136,6 +141,15 @@ class ScriptRunner: return [ui.gr_show(True if i == 0 else args_from <= i < args_to) for i in range(len(inputs))] + def init_field(title): + if title == 'None': + return + script_index = self.titles.index(title) + script = self.scripts[script_index] + for i in range(script.args_from, script.args_to): + inputs[i].visible = True + + dropdown.init_field = init_field dropdown.change( fn=select_script, inputs=[dropdown], diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py index 79405525e..98123fbf4 100644 --- a/modules/sd_hijack_optimizations.py +++ b/modules/sd_hijack_optimizations.py @@ -181,7 +181,7 @@ def einsum_op_cuda(q, k, v): mem_free_torch = mem_reserved - mem_active mem_free_total = mem_free_cuda + mem_free_torch # Divide factor of safety as there's copying and fragmentation - return self.einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20)) + return einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20)) def einsum_op(q, k, v): if q.device.type == 'cuda': @@ -296,10 +296,16 @@ def xformers_attnblock_forward(self, x): try: h_ = x h_ = self.norm(h_) - q1 = self.q(h_).contiguous() - k1 = self.k(h_).contiguous() - v = self.v(h_).contiguous() - out = xformers.ops.memory_efficient_attention(q1, k1, v) + q = self.q(h_) + k = self.k(h_) + v = self.v(h_) + b, c, h, w = q.shape + q, k, v = map(lambda t: rearrange(t, 'b c h w -> b (h w) c'), (q, k, v)) + q = q.contiguous() + k = k.contiguous() + v = v.contiguous() + out = xformers.ops.memory_efficient_attention(q, k, v) + out = rearrange(out, 'b (h w) c -> b c h w', h=h) out = self.proj_out(out) return x + out except NotImplementedError: diff --git a/modules/sd_models.py b/modules/sd_models.py index 3aa21ec14..7ad6d474a 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -122,11 +122,33 @@ def select_checkpoint(): return checkpoint_info +chckpoint_dict_replacements = { + 'cond_stage_model.transformer.embeddings.': 'cond_stage_model.transformer.text_model.embeddings.', + 'cond_stage_model.transformer.encoder.': 'cond_stage_model.transformer.text_model.encoder.', + 'cond_stage_model.transformer.final_layer_norm.': 'cond_stage_model.transformer.text_model.final_layer_norm.', +} + + +def transform_checkpoint_dict_key(k): + for text, replacement in chckpoint_dict_replacements.items(): + if k.startswith(text): + k = replacement + k[len(text):] + + return k + + def get_state_dict_from_checkpoint(pl_sd): if "state_dict" in pl_sd: - return pl_sd["state_dict"] + pl_sd = pl_sd["state_dict"] - return pl_sd + sd = {} + for k, v in pl_sd.items(): + new_key = transform_checkpoint_dict_key(k) + + if new_key is not None: + sd[new_key] = v + + return sd def load_model_weights(model, checkpoint_info): @@ -141,7 +163,7 @@ def load_model_weights(model, checkpoint_info): print(f"Global Step: {pl_sd['global_step']}") sd = get_state_dict_from_checkpoint(pl_sd) - model.load_state_dict(sd, strict=False) + missing, extra = model.load_state_dict(sd, strict=False) if shared.cmd_opts.opt_channelslast: model.to(memory_format=torch.channels_last) diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py index 20309e06b..b58e810b3 100644 --- a/modules/sd_samplers.py +++ b/modules/sd_samplers.py @@ -98,25 +98,8 @@ def store_latent(decoded): shared.state.current_image = sample_to_image(decoded) - -def extended_tdqm(sequence, *args, desc=None, **kwargs): - state.sampling_steps = len(sequence) - state.sampling_step = 0 - - seq = sequence if cmd_opts.disable_console_progressbars else tqdm.tqdm(sequence, *args, desc=state.job, file=shared.progress_print_out, **kwargs) - - for x in seq: - if state.interrupted or state.skipped: - break - - yield x - - state.sampling_step += 1 - shared.total_tqdm.update() - - -ldm.models.diffusion.ddim.tqdm = lambda *args, desc=None, **kwargs: extended_tdqm(*args, desc=desc, **kwargs) -ldm.models.diffusion.plms.tqdm = lambda *args, desc=None, **kwargs: extended_tdqm(*args, desc=desc, **kwargs) +class InterruptedException(BaseException): + pass class VanillaStableDiffusionSampler: @@ -128,14 +111,32 @@ class VanillaStableDiffusionSampler: self.init_latent = None self.sampler_noises = None self.step = 0 + self.stop_at = None self.eta = None self.default_eta = 0.0 self.config = None + self.last_latent = None def number_of_needed_noises(self, p): return 0 + def launch_sampling(self, steps, func): + state.sampling_steps = steps + state.sampling_step = 0 + + try: + return func() + except InterruptedException: + return self.last_latent + def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs): + if state.interrupted or state.skipped: + raise InterruptedException + + if self.stop_at is not None and self.step > self.stop_at: + raise InterruptedException + + conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step) unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step) @@ -159,11 +160,16 @@ class VanillaStableDiffusionSampler: res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs) if self.mask is not None: - store_latent(self.init_latent * self.mask + self.nmask * res[1]) + self.last_latent = self.init_latent * self.mask + self.nmask * res[1] else: - store_latent(res[1]) + self.last_latent = res[1] + + store_latent(self.last_latent) self.step += 1 + state.sampling_step = self.step + shared.total_tqdm.update() + return res def initialize(self, p): @@ -192,7 +198,7 @@ class VanillaStableDiffusionSampler: self.init_latent = x self.step = 0 - samples = self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning) + samples = self.launch_sampling(steps, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning)) return samples @@ -206,9 +212,9 @@ class VanillaStableDiffusionSampler: # existing code fails with certain step counts, like 9 try: - samples_ddim, _ = self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta) + samples_ddim = self.launch_sampling(steps, lambda: self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)[0]) except Exception: - samples_ddim, _ = self.sampler.sample(S=steps+1, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta) + samples_ddim = self.launch_sampling(steps, lambda: self.sampler.sample(S=steps+1, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)[0]) return samples_ddim @@ -223,6 +229,9 @@ class CFGDenoiser(torch.nn.Module): self.step = 0 def forward(self, x, sigma, uncond, cond, cond_scale): + if state.interrupted or state.skipped: + raise InterruptedException + conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step) uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step) @@ -268,25 +277,6 @@ class CFGDenoiser(torch.nn.Module): return denoised -def extended_trange(sampler, count, *args, **kwargs): - state.sampling_steps = count - state.sampling_step = 0 - - seq = range(count) if cmd_opts.disable_console_progressbars else tqdm.trange(count, *args, desc=state.job, file=shared.progress_print_out, **kwargs) - - for x in seq: - if state.interrupted or state.skipped: - break - - if sampler.stop_at is not None and x > sampler.stop_at: - break - - yield x - - state.sampling_step += 1 - shared.total_tqdm.update() - - class TorchHijack: def __init__(self, kdiff_sampler): self.kdiff_sampler = kdiff_sampler @@ -314,9 +304,28 @@ class KDiffusionSampler: self.eta = None self.default_eta = 1.0 self.config = None + self.last_latent = None def callback_state(self, d): - store_latent(d["denoised"]) + step = d['i'] + latent = d["denoised"] + store_latent(latent) + self.last_latent = latent + + if self.stop_at is not None and step > self.stop_at: + raise InterruptedException + + state.sampling_step = step + shared.total_tqdm.update() + + def launch_sampling(self, steps, func): + state.sampling_steps = steps + state.sampling_step = 0 + + try: + return func() + except InterruptedException: + return self.last_latent def number_of_needed_noises(self, p): return p.steps @@ -339,9 +348,6 @@ class KDiffusionSampler: self.sampler_noise_index = 0 self.eta = p.eta or opts.eta_ancestral - if hasattr(k_diffusion.sampling, 'trange'): - k_diffusion.sampling.trange = lambda *args, **kwargs: extended_trange(self, *args, **kwargs) - if self.sampler_noises is not None: k_diffusion.sampling.torch = TorchHijack(self) @@ -383,8 +389,9 @@ class KDiffusionSampler: self.model_wrap_cfg.init_latent = x - return self.func(self.model_wrap_cfg, xi, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs) + samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, xi, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs)) + return samples def sample(self, p, x, conditioning, unconditional_conditioning, steps=None): steps = steps or p.steps @@ -406,6 +413,8 @@ class KDiffusionSampler: extra_params_kwargs['n'] = steps else: extra_params_kwargs['sigmas'] = sigmas - samples = self.func(self.model_wrap_cfg, x, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs) + + samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs)) + return samples diff --git a/modules/shared.py b/modules/shared.py index fa30bbb05..f7d668704 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -13,7 +13,7 @@ import modules.memmon import modules.sd_models import modules.styles import modules.devices as devices -from modules import sd_samplers, sd_models +from modules import sd_samplers, sd_models, localization from modules.hypernetworks import hypernetwork from modules.paths import models_path, script_path, sd_path @@ -31,6 +31,7 @@ parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI") parser.add_argument("--embeddings-dir", type=str, default=os.path.join(script_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)") parser.add_argument("--hypernetwork-dir", type=str, default=os.path.join(models_path, 'hypernetworks'), help="hypernetwork directory") +parser.add_argument("--localizations-dir", type=str, default=os.path.join(script_path, 'localizations'), help="localizations directory") parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui") parser.add_argument("--medvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a little speed for low VRM usage") parser.add_argument("--lowvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a lot of speed for very low VRM usage") @@ -40,6 +41,7 @@ parser.add_argument("--unload-gfpgan", action='store_true', help="does not do an parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast") parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site (doesn't work for me but you might have better luck)") parser.add_argument("--ngrok", type=str, help="ngrok authtoken, alternative to gradio --share", default=None) +parser.add_argument("--ngrok-region", type=str, help="The region in which ngrok should start.", default="us") parser.add_argument("--codeformer-models-path", type=str, help="Path to directory with codeformer model file(s).", default=os.path.join(models_path, 'Codeformer')) parser.add_argument("--gfpgan-models-path", type=str, help="Path to directory with GFPGAN model file(s).", default=os.path.join(models_path, 'GFPGAN')) parser.add_argument("--esrgan-models-path", type=str, help="Path to directory with ESRGAN model file(s).", default=os.path.join(models_path, 'ESRGAN')) @@ -68,14 +70,26 @@ parser.add_argument("--gradio-img2img-tool", type=str, help='gradio image upload parser.add_argument("--opt-channelslast", action='store_true', help="change memory type for stable diffusion to channels last") parser.add_argument("--styles-file", type=str, help="filename to use for styles", default=os.path.join(script_path, 'styles.csv')) parser.add_argument("--autolaunch", action='store_true', help="open the webui URL in the system's default browser upon launch", default=False) +parser.add_argument("--theme", type=str, help="launches the UI with light or dark theme", default=None) parser.add_argument("--use-textbox-seed", action='store_true', help="use textbox for seeds in UI (no up/down, but possible to input long seeds)", default=False) parser.add_argument("--disable-console-progressbars", action='store_true', help="do not output progressbars to console", default=False) parser.add_argument("--enable-console-prompts", action='store_true', help="print prompts to console when generating with txt2img and img2img", default=False) parser.add_argument('--vae-path', type=str, help='Path to Variational Autoencoders model', default=None) parser.add_argument("--disable-safe-unpickle", action='store_true', help="disable checking pytorch models for malicious code", default=False) - +parser.add_argument("--api", action='store_true', help="use api=True to launch the api with the webui") +parser.add_argument("--nowebui", action='store_true', help="use api=True to launch the api instead of the webui") cmd_opts = parser.parse_args() +restricted_opts = [ + "samples_filename_pattern", + "outdir_samples", + "outdir_txt2img_samples", + "outdir_img2img_samples", + "outdir_extras_samples", + "outdir_grids", + "outdir_txt2img_grids", + "outdir_save", +] devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_bsrgan, devices.device_esrgan, devices.device_scunet, devices.device_codeformer = \ (devices.cpu if any(y in cmd_opts.use_cpu for y in [x, 'all']) else devices.get_optimal_device() for x in ['sd', 'interrogate', 'gfpgan', 'bsrgan', 'esrgan', 'scunet', 'codeformer']) @@ -92,7 +106,6 @@ os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True) hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir) loaded_hypernetwork = None - def reload_hypernetworks(): global hypernetworks @@ -140,6 +153,8 @@ interrogator = modules.interrogate.InterrogateModels("interrogate") face_restorers = [] +localization.list_localizations(cmd_opts.localizations_dir) + def realesrgan_models_names(): import modules.realesrgan_model @@ -280,11 +295,13 @@ options_templates.update(options_section(('ui', "User interface"), { "do_not_show_images": OptionInfo(False, "Do not show any images in results for web"), "add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"), "add_model_name_to_info": OptionInfo(False, "Add model name to generation information"), + "disable_weights_auto_swap": OptionInfo(False, "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint."), "font": OptionInfo("", "Font for image grids that have text"), "js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"), "js_modal_lightbox_initially_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"), "show_progress_in_title": OptionInfo(True, "Show generation progress in window title."), 'quicksettings': OptionInfo("sd_model_checkpoint", "Quicksettings list"), + 'localization': OptionInfo("None", "Localization (requires restart)", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)), })) options_templates.update(options_section(('sampler-params', "Sampler parameters"), { diff --git a/modules/styles.py b/modules/styles.py index d44dfc1ad..3bf5c5b60 100644 --- a/modules/styles.py +++ b/modules/styles.py @@ -45,7 +45,7 @@ class StyleDatabase: if not os.path.exists(path): return - with open(path, "r", encoding="utf8", newline='') as file: + with open(path, "r", encoding="utf-8-sig", newline='') as file: reader = csv.DictReader(file) for row in reader: # Support loading old CSV format with "name, text"-columns @@ -79,7 +79,7 @@ class StyleDatabase: def save_styles(self, path: str) -> None: # Write to temporary file first, so we don't nuke the file if something goes wrong fd, temp_path = tempfile.mkstemp(".csv") - with os.fdopen(fd, "w", encoding="utf8", newline='') as file: + with os.fdopen(fd, "w", encoding="utf-8-sig", newline='') as file: # _fields is actually part of the public API: typing.NamedTuple is a replacement for collections.NamedTuple, # and collections.NamedTuple has explicit documentation for accessing _fields. Same goes for _asdict() writer = csv.DictWriter(file, fieldnames=PromptStyle._fields) diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 2ed345b14..3be69562b 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -137,6 +137,7 @@ class EmbeddingDatabase: continue print(f"Loaded a total of {len(self.word_embeddings)} textual inversion embeddings.") + print("Embeddings:", ', '.join(self.word_embeddings.keys())) def find_embedding_at_position(self, tokens, offset): token = tokens[offset] @@ -296,6 +297,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc sd_model=shared.sd_model, do_not_save_grid=True, do_not_save_samples=True, + do_not_reload_embeddings=True, ) if preview_from_txt2img: diff --git a/modules/ui.py b/modules/ui.py index 90b8646b7..1ff7eb4f1 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -23,9 +23,9 @@ import gradio as gr import gradio.utils import gradio.routes -from modules import sd_hijack, sd_models +from modules import sd_hijack, sd_models, localization from modules.paths import script_path -from modules.shared import opts, cmd_opts +from modules.shared import opts, cmd_opts, restricted_opts if cmd_opts.deepdanbooru: from modules.deepbooru import get_deepbooru_tags import modules.shared as shared @@ -56,7 +56,7 @@ if not cmd_opts.share and not cmd_opts.listen: if cmd_opts.ngrok != None: import modules.ngrok as ngrok print('ngrok authtoken detected, trying to connect...') - ngrok.connect(cmd_opts.ngrok, cmd_opts.port if cmd_opts.port != None else 7860) + ngrok.connect(cmd_opts.ngrok, cmd_opts.port if cmd_opts.port != None else 7860, cmd_opts.ngrok_region) def gr_show(visible=True): @@ -261,6 +261,19 @@ def wrap_gradio_call(func, extra_outputs=None): return f +def calc_time_left(progress, threshold, label, force_display): + if progress == 0: + return "" + else: + time_since_start = time.time() - shared.state.time_start + eta = (time_since_start/progress) + eta_relative = eta-time_since_start + if (eta_relative > threshold and progress > 0.02) or force_display: + return label + time.strftime('%H:%M:%S', time.gmtime(eta_relative)) + else: + return "" + + def check_progress_call(id_part): if shared.state.job_count == 0: return "", gr_show(False), gr_show(False), gr_show(False) @@ -272,11 +285,15 @@ def check_progress_call(id_part): if shared.state.sampling_steps > 0: progress += 1 / shared.state.job_count * shared.state.sampling_step / shared.state.sampling_steps + time_left = calc_time_left( progress, 60, " ETA:", shared.state.time_left_force_display ) + if time_left != "": + shared.state.time_left_force_display = True + progress = min(progress, 1) progressbar = "" if opts.show_progressbar: - progressbar = f"""
{str(int(progress*100))+"%" if progress > 0.01 else ""}
""" + progressbar = f"""
{str(int(progress*100))+"%"+time_left if progress > 0.01 else ""}
""" image = gr_show(False) preview_visibility = gr_show(False) @@ -308,6 +325,8 @@ def check_progress_call_initial(id_part): shared.state.current_latent = None shared.state.current_image = None shared.state.textinfo = None + shared.state.time_start = time.time() + shared.state.time_left_force_display = False return check_progress_call(id_part) @@ -508,9 +527,11 @@ def create_toprow(is_img2img): with gr.Row(): with gr.Column(scale=1, elem_id="style_pos_col"): prompt_style = gr.Dropdown(label="Style 1", elem_id=f"{id_part}_style_index", choices=[k for k, v in shared.prompt_styles.styles.items()], value=next(iter(shared.prompt_styles.styles.keys()))) + prompt_style.save_to_config = True with gr.Column(scale=1, elem_id="style_neg_col"): prompt_style2 = gr.Dropdown(label="Style 2", elem_id=f"{id_part}_style2_index", choices=[k for k, v in shared.prompt_styles.styles.items()], value=next(iter(shared.prompt_styles.styles.keys()))) + prompt_style2.save_to_config = True return prompt, roll, prompt_style, negative_prompt, prompt_style2, submit, button_interrogate, button_deepbooru, prompt_style_apply, save_style, paste, token_counter, token_button @@ -540,6 +561,10 @@ def apply_setting(key, value): if value is None: return gr.update() + # dont allow model to be swapped when model hash exists in prompt + if key == "sd_model_checkpoint" and opts.disable_weights_auto_swap: + return gr.update() + if key == "sd_model_checkpoint": ckpt_info = sd_models.get_closet_checkpoint_match(value) @@ -566,6 +591,24 @@ def create_ui(wrap_gradio_gpu_call): import modules.img2img import modules.txt2img + def create_refresh_button(refresh_component, refresh_method, refreshed_args, elem_id): + def refresh(): + refresh_method() + args = refreshed_args() if callable(refreshed_args) else refreshed_args + + for k, v in args.items(): + setattr(refresh_component, k, v) + + return gr.update(**(args or {})) + + refresh_button = gr.Button(value=refresh_symbol, elem_id=elem_id) + refresh_button.click( + fn = refresh, + inputs = [], + outputs = [refresh_component] + ) + return refresh_button + with gr.Blocks(analytics_enabled=False) as txt2img_interface: txt2img_prompt, roll, txt2img_prompt_style, txt2img_negative_prompt, txt2img_prompt_style2, submit, _, _, txt2img_prompt_style_apply, txt2img_save_style, txt2img_paste, token_counter, token_button = create_toprow(is_img2img=False) dummy_component = gr.Label(visible=False) @@ -1016,6 +1059,15 @@ def create_ui(wrap_gradio_gpu_call): with gr.TabItem('Batch Process'): image_batch = gr.File(label="Batch Process", file_count="multiple", interactive=True, type="file") + with gr.TabItem('Batch from Directory'): + extras_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs, + placeholder="A directory on the same machine where the server is running." + ) + extras_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs, + placeholder="Leave blank to save images to the default path." + ) + show_extras_results = gr.Checkbox(label='Show result images', value=True) + with gr.Tabs(elem_id="extras_resize_mode"): with gr.TabItem('Scale by'): upscaling_resize = gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label="Resize", value=2) @@ -1027,10 +1079,10 @@ def create_ui(wrap_gradio_gpu_call): upscaling_crop = gr.Checkbox(label='Crop to fit', value=True) with gr.Group(): - extras_upscaler_1 = gr.Radio(label='Upscaler 1', choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index") + extras_upscaler_1 = gr.Radio(label='Upscaler 1', elem_id="extras_upscaler_1", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index") with gr.Group(): - extras_upscaler_2 = gr.Radio(label='Upscaler 2', choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index") + extras_upscaler_2 = gr.Radio(label='Upscaler 2', elem_id="extras_upscaler_2", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index") extras_upscaler_2_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Upscaler 2 visibility", value=1) with gr.Group(): @@ -1060,6 +1112,9 @@ def create_ui(wrap_gradio_gpu_call): dummy_component, extras_image, image_batch, + extras_batch_input_dir, + extras_batch_output_dir, + show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, @@ -1191,8 +1246,12 @@ def create_ui(wrap_gradio_gpu_call): with gr.Tab(label="Train"): gr.HTML(value="

Train an embedding; must specify a directory with a set of 1:1 ratio images

") - train_embedding_name = gr.Dropdown(label='Embedding', choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())) - train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', choices=[x for x in shared.hypernetworks.keys()]) + with gr.Row(): + train_embedding_name = gr.Dropdown(label='Embedding', elem_id="train_embedding", choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())) + create_refresh_button(train_embedding_name, sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings, lambda: {"choices": sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())}, "refresh_train_embedding_name") + with gr.Row(): + train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', elem_id="train_hypernetwork", choices=[x for x in shared.hypernetworks.keys()]) + create_refresh_button(train_hypernetwork_name, shared.reload_hypernetworks, lambda: {"choices": sorted([x for x in shared.hypernetworks.keys()])}, "refresh_train_hypernetwork_name") learn_rate = gr.Textbox(label='Learning rate', placeholder="Learning rate", value="0.005") batch_size = gr.Number(label='Batch size', value=1, precision=0) dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images") @@ -1301,6 +1360,8 @@ def create_ui(wrap_gradio_gpu_call): batch_size, dataset_directory, log_directory, + training_width, + training_height, steps, create_image_every, save_embedding_every, @@ -1340,31 +1401,18 @@ def create_ui(wrap_gradio_gpu_call): else: raise Exception(f'bad options item type: {str(t)} for key {key}') + elem_id = "setting_"+key + if info.refresh is not None: if is_quicksettings: - res = comp(label=info.label, value=fun, **(args or {})) - refresh_button = gr.Button(value=refresh_symbol, elem_id="refresh_"+key) + res = comp(label=info.label, value=fun, elem_id=elem_id, **(args or {})) + create_refresh_button(res, info.refresh, info.component_args, "refresh_" + key) else: with gr.Row(variant="compact"): - res = comp(label=info.label, value=fun, **(args or {})) - refresh_button = gr.Button(value=refresh_symbol, elem_id="refresh_" + key) - - def refresh(): - info.refresh() - refreshed_args = info.component_args() if callable(info.component_args) else info.component_args - - for k, v in refreshed_args.items(): - setattr(res, k, v) - - return gr.update(**(refreshed_args or {})) - - refresh_button.click( - fn=refresh, - inputs=[], - outputs=[res], - ) + res = comp(label=info.label, value=fun, elem_id=elem_id, **(args or {})) + create_refresh_button(res, info.refresh, info.component_args, "refresh_" + key) else: - res = comp(label=info.label, value=fun, **(args or {})) + res = comp(label=info.label, value=fun, elem_id=elem_id, **(args or {})) return res @@ -1373,7 +1421,10 @@ def create_ui(wrap_gradio_gpu_call): component_dict = {} def open_folder(f): - if not os.path.isdir(f): + if not os.path.exists(f): + print(f'Folder "{f}" does not exist. After you create an image, the folder will be created.') + return + elif not os.path.isdir(f): print(f""" WARNING An open_folder request was made with an argument that is not a folder. @@ -1406,6 +1457,9 @@ Requested path was: {f} if comp_args and isinstance(comp_args, dict) and comp_args.get('visible') is False: continue + if cmd_opts.hide_ui_dir_config and key in restricted_opts: + continue + oldval = opts.data.get(key, None) opts.data[key] = value @@ -1423,6 +1477,9 @@ Requested path was: {f} if not opts.same_type(value, opts.data_labels[key].default): return gr.update(visible=True), opts.dumpjson() + if cmd_opts.hide_ui_dir_config and key in restricted_opts: + return gr.update(value=oldval), opts.dumpjson() + oldval = opts.data.get(key, None) opts.data[key] = value @@ -1479,6 +1536,9 @@ Requested path was: {f} with gr.Row(): request_notifications = gr.Button(value='Request browser notifications', elem_id="request_notifications") + download_localization = gr.Button(value='Download localization template', elem_id="download_localization") + + with gr.Row(): reload_script_bodies = gr.Button(value='Reload custom script bodies (No ui updates, No restart)', variant='secondary') restart_gradio = gr.Button(value='Restart Gradio and Refresh components (Custom Scripts, ui.py, js and css only)', variant='primary') @@ -1489,6 +1549,13 @@ Requested path was: {f} _js='function(){}' ) + download_localization.click( + fn=lambda: None, + inputs=[], + outputs=[], + _js='download_localization' + ) + def reload_scripts(): modules.scripts.reload_script_body_only() reload_javascript() # need to refresh the html page @@ -1692,7 +1759,7 @@ Requested path was: {f} print(traceback.format_exc(), file=sys.stderr) def loadsave(path, x): - def apply_field(obj, field, condition=None): + def apply_field(obj, field, condition=None, init_field=None): key = path + "/" + field if getattr(obj,'custom_script_source',None) is not None: @@ -1704,8 +1771,12 @@ Requested path was: {f} saved_value = ui_settings.get(key, None) if saved_value is None: ui_settings[key] = getattr(obj, field) - elif condition is None or condition(saved_value): + elif condition and not condition(saved_value): + print(f'Warning: Bad ui setting value: {key}: {saved_value}; Default value "{getattr(obj, field)}" will be used instead.') + else: setattr(obj, field, saved_value) + if init_field is not None: + init_field(saved_value) if type(x) in [gr.Slider, gr.Radio, gr.Checkbox, gr.Textbox, gr.Number] and x.visible: apply_field(x, 'visible') @@ -1728,9 +1799,16 @@ Requested path was: {f} if type(x) == gr.Number: apply_field(x, 'value') + # Since there are many dropdowns that shouldn't be saved, + # we only mark dropdowns that should be saved. + if type(x) == gr.Dropdown and getattr(x, 'save_to_config', False): + apply_field(x, 'value', lambda val: val in x.choices, getattr(x, 'init_field', None)) + apply_field(x, 'visible') + visit(txt2img_interface, loadsave, "txt2img") visit(img2img_interface, loadsave, "img2img") visit(extras_interface, loadsave, "extras") + visit(modelmerger_interface, loadsave, "modelmerger") if not error_loading and (not os.path.exists(ui_config_file) or settings_count != len(ui_settings)): with open(ui_config_file, "w", encoding="utf8") as file: @@ -1748,6 +1826,11 @@ def load_javascript(raw_response): with open(os.path.join(jsdir, filename), "r", encoding="utf8") as jsfile: javascript += f"\n" + if cmd_opts.theme is not None: + javascript += f"\n\n" + + javascript += f"\n" + def template_response(*args, **kwargs): res = raw_response(*args, **kwargs) res.body = res.body.replace( diff --git a/requirements.txt b/requirements.txt index cf583de99..da1969cf4 100644 --- a/requirements.txt +++ b/requirements.txt @@ -23,3 +23,4 @@ resize-right torchdiffeq kornia lark +inflection diff --git a/requirements_versions.txt b/requirements_versions.txt index abadcb583..72ccc5a34 100644 --- a/requirements_versions.txt +++ b/requirements_versions.txt @@ -22,3 +22,4 @@ resize-right==0.0.2 torchdiffeq==0.2.3 kornia==0.6.7 lark==1.1.2 +inflection==0.5.1 diff --git a/script.js b/script.js index 88f2c839d..8b3b67e3e 100644 --- a/script.js +++ b/script.js @@ -21,20 +21,20 @@ function onUiTabChange(callback){ uiTabChangeCallbacks.push(callback) } -function runCallback(x){ +function runCallback(x, m){ try { - x() + x(m) } catch (e) { (console.error || console.log).call(console, e.message, e); } } -function executeCallbacks(queue) { - queue.forEach(runCallback) +function executeCallbacks(queue, m) { + queue.forEach(function(x){runCallback(x, m)}) } document.addEventListener("DOMContentLoaded", function() { var mutationObserver = new MutationObserver(function(m){ - executeCallbacks(uiUpdateCallbacks); + executeCallbacks(uiUpdateCallbacks, m); const newTab = get_uiCurrentTab(); if ( newTab && ( newTab !== uiCurrentTab ) ) { uiCurrentTab = newTab; diff --git a/scripts/xy_grid.py b/scripts/xy_grid.py index 88ad3bf78..5cca168a1 100644 --- a/scripts/xy_grid.py +++ b/scripts/xy_grid.py @@ -233,6 +233,21 @@ def draw_xy_grid(p, xs, ys, x_labels, y_labels, cell, draw_legend, include_lone_ return processed_result +class SharedSettingsStackHelper(object): + def __enter__(self): + self.CLIP_stop_at_last_layers = opts.CLIP_stop_at_last_layers + self.hypernetwork = opts.sd_hypernetwork + self.model = shared.sd_model + + def __exit__(self, exc_type, exc_value, tb): + modules.sd_models.reload_model_weights(self.model) + + hypernetwork.load_hypernetwork(self.hypernetwork) + hypernetwork.apply_strength() + + opts.data["CLIP_stop_at_last_layers"] = self.CLIP_stop_at_last_layers + + re_range = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\(([+-]\d+)\s*\))?\s*") re_range_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d*)?)(?:\s*\(([+-]\d+(?:.\d*)?)\s*\))?\s*") @@ -267,9 +282,6 @@ class Script(scripts.Script): if not opts.return_grid: p.batch_size = 1 - - CLIP_stop_at_last_layers = opts.CLIP_stop_at_last_layers - def process_axis(opt, vals): if opt.label == 'Nothing': return [0] @@ -367,27 +379,19 @@ class Script(scripts.Script): return process_images(pc) - processed = draw_xy_grid( - p, - xs=xs, - ys=ys, - x_labels=[x_opt.format_value(p, x_opt, x) for x in xs], - y_labels=[y_opt.format_value(p, y_opt, y) for y in ys], - cell=cell, - draw_legend=draw_legend, - include_lone_images=include_lone_images - ) + with SharedSettingsStackHelper(): + processed = draw_xy_grid( + p, + xs=xs, + ys=ys, + x_labels=[x_opt.format_value(p, x_opt, x) for x in xs], + y_labels=[y_opt.format_value(p, y_opt, y) for y in ys], + cell=cell, + draw_legend=draw_legend, + include_lone_images=include_lone_images + ) if opts.grid_save: images.save_image(processed.images[0], p.outpath_grids, "xy_grid", prompt=p.prompt, seed=processed.seed, grid=True, p=p) - # restore checkpoint in case it was changed by axes - modules.sd_models.reload_model_weights(shared.sd_model) - - hypernetwork.load_hypernetwork(opts.sd_hypernetwork) - hypernetwork.apply_strength() - - - opts.data["CLIP_stop_at_last_layers"] = CLIP_stop_at_last_layers - return processed diff --git a/style.css b/style.css index 33832ebff..9dc4b6968 100644 --- a/style.css +++ b/style.css @@ -478,7 +478,7 @@ input[type="range"]{ padding: 0; } -#refresh_sd_model_checkpoint, #refresh_sd_hypernetwork{ +#refresh_sd_model_checkpoint, #refresh_sd_hypernetwork, #refresh_train_hypernetwork_name, #refresh_train_embedding_name, #refresh_localization{ max-width: 2.5em; min-width: 2.5em; height: 2.4em; diff --git a/webui.bat b/webui.bat index 3f1d03f6d..a38a28bbd 100644 --- a/webui.bat +++ b/webui.bat @@ -33,7 +33,7 @@ goto :launch :skip_venv :launch -%PYTHON% launch.py +%PYTHON% launch.py %* pause exit /b diff --git a/webui.py b/webui.py index fe0ce321f..71724c3b1 100644 --- a/webui.py +++ b/webui.py @@ -4,7 +4,7 @@ import time import importlib import signal import threading - +from fastapi import FastAPI from fastapi.middleware.gzip import GZipMiddleware from modules.paths import script_path @@ -31,7 +31,6 @@ from modules.paths import script_path from modules.shared import cmd_opts import modules.hypernetworks.hypernetwork - queue_lock = threading.Lock() @@ -87,10 +86,6 @@ def initialize(): shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork))) shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength) - -def webui(): - initialize() - # make the program just exit at ctrl+c without waiting for anything def sigint_handler(sig, frame): print(f'Interrupted with signal {sig} in {frame}') @@ -98,10 +93,37 @@ def webui(): signal.signal(signal.SIGINT, sigint_handler) - while 1: +def create_api(app): + from modules.api.api import Api + api = Api(app, queue_lock) + return api + +def wait_on_server(demo=None): + while 1: + time.sleep(0.5) + if demo and getattr(demo, 'do_restart', False): + time.sleep(0.5) + demo.close() + time.sleep(0.5) + break + +def api_only(): + initialize() + + app = FastAPI() + app.add_middleware(GZipMiddleware, minimum_size=1000) + api = create_api(app) + + api.launch(server_name="0.0.0.0" if cmd_opts.listen else "127.0.0.1", port=cmd_opts.port if cmd_opts.port else 7861) + + +def webui(launch_api=False): + initialize() + + while 1: demo = modules.ui.create_ui(wrap_gradio_gpu_call=wrap_gradio_gpu_call) - + app, local_url, share_url = demo.launch( share=cmd_opts.share, server_name="0.0.0.0" if cmd_opts.listen else None, @@ -111,17 +133,14 @@ def webui(): inbrowser=cmd_opts.autolaunch, prevent_thread_lock=True ) - + app.add_middleware(GZipMiddleware, minimum_size=1000) - while 1: - time.sleep(0.5) - if getattr(demo, 'do_restart', False): - time.sleep(0.5) - demo.close() - time.sleep(0.5) - break + if (launch_api): + create_api(app) + wait_on_server(demo) + sd_samplers.set_samplers() print('Reloading Custom Scripts') @@ -133,5 +152,10 @@ def webui(): print('Restarting Gradio') + +task = [] if __name__ == "__main__": - webui() + if cmd_opts.nowebui: + api_only() + else: + webui(cmd_opts.api) \ No newline at end of file diff --git a/webui.sh b/webui.sh index 980c0aaf3..a9f85d89f 100755 --- a/webui.sh +++ b/webui.sh @@ -138,4 +138,4 @@ fi printf "\n%s\n" "${delimiter}" printf "Launching launch.py..." printf "\n%s\n" "${delimiter}" -"${python_cmd}" "${LAUNCH_SCRIPT}" +"${python_cmd}" "${LAUNCH_SCRIPT}" "$@"