mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-17 11:50:18 +08:00
Reload VAE without reloading sd checkpoint
This commit is contained in:
parent
f8c6468d42
commit
056f06d373
@ -159,15 +159,13 @@ def get_state_dict_from_checkpoint(pl_sd):
|
||||
return pl_sd
|
||||
|
||||
|
||||
vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"}
|
||||
|
||||
def load_model_weights(model, checkpoint_info, vae_file="auto"):
|
||||
checkpoint_file = checkpoint_info.filename
|
||||
sd_model_hash = checkpoint_info.hash
|
||||
|
||||
vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file)
|
||||
|
||||
checkpoint_key = (checkpoint_info, vae_file)
|
||||
checkpoint_key = checkpoint_info
|
||||
|
||||
if checkpoint_key not in checkpoints_loaded:
|
||||
print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}")
|
||||
@ -190,13 +188,12 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"):
|
||||
devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16
|
||||
devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16
|
||||
|
||||
sd_vae.load_vae(model, vae_file)
|
||||
model.first_stage_model.to(devices.dtype_vae)
|
||||
|
||||
if shared.opts.sd_checkpoint_cache > 0:
|
||||
# if PR #4035 were to get merged, restore base VAE first before caching
|
||||
checkpoints_loaded[checkpoint_key] = model.state_dict().copy()
|
||||
while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache:
|
||||
checkpoints_loaded.popitem(last=False) # LRU
|
||||
|
||||
else:
|
||||
vae_name = sd_vae.get_filename(vae_file)
|
||||
print(f"Loading weights [{sd_model_hash}] with {vae_name} VAE from cache")
|
||||
@ -207,6 +204,8 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"):
|
||||
model.sd_model_checkpoint = checkpoint_file
|
||||
model.sd_checkpoint_info = checkpoint_info
|
||||
|
||||
sd_vae.load_vae(model, vae_file)
|
||||
|
||||
|
||||
def load_model(checkpoint_info=None):
|
||||
from modules import lowvram, sd_hijack
|
||||
@ -254,14 +253,14 @@ def load_model(checkpoint_info=None):
|
||||
return sd_model
|
||||
|
||||
|
||||
def reload_model_weights(sd_model=None, info=None, force=False):
|
||||
def reload_model_weights(sd_model=None, info=None):
|
||||
from modules import lowvram, devices, sd_hijack
|
||||
checkpoint_info = info or select_checkpoint()
|
||||
|
||||
if not sd_model:
|
||||
sd_model = shared.sd_model
|
||||
|
||||
if sd_model.sd_model_checkpoint == checkpoint_info.filename and not force:
|
||||
if sd_model.sd_model_checkpoint == checkpoint_info.filename:
|
||||
return
|
||||
|
||||
if sd_model.sd_checkpoint_info.config != checkpoint_info.config or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info):
|
||||
|
@ -1,26 +1,65 @@
|
||||
import torch
|
||||
import os
|
||||
from collections import namedtuple
|
||||
from modules import shared, devices
|
||||
from modules import shared, devices, script_callbacks
|
||||
from modules.paths import models_path
|
||||
import glob
|
||||
|
||||
|
||||
model_dir = "Stable-diffusion"
|
||||
model_path = os.path.abspath(os.path.join(models_path, model_dir))
|
||||
vae_dir = "VAE"
|
||||
vae_path = os.path.abspath(os.path.join(models_path, vae_dir))
|
||||
|
||||
|
||||
vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"}
|
||||
|
||||
|
||||
default_vae_dict = {"auto": "auto", "None": "None"}
|
||||
default_vae_list = ["auto", "None"]
|
||||
|
||||
|
||||
default_vae_values = [default_vae_dict[x] for x in default_vae_list]
|
||||
vae_dict = dict(default_vae_dict)
|
||||
vae_list = list(default_vae_list)
|
||||
first_load = True
|
||||
|
||||
|
||||
base_vae = None
|
||||
loaded_vae_file = None
|
||||
checkpoint_info = None
|
||||
|
||||
|
||||
def get_base_vae(model):
|
||||
if base_vae is not None and checkpoint_info == model.sd_checkpoint_info and model:
|
||||
return base_vae
|
||||
return None
|
||||
|
||||
|
||||
def store_base_vae(model):
|
||||
global base_vae, checkpoint_info
|
||||
if checkpoint_info != model.sd_checkpoint_info:
|
||||
base_vae = model.first_stage_model.state_dict().copy()
|
||||
checkpoint_info = model.sd_checkpoint_info
|
||||
|
||||
|
||||
def delete_base_vae():
|
||||
global base_vae, checkpoint_info
|
||||
base_vae = None
|
||||
checkpoint_info = None
|
||||
|
||||
|
||||
def restore_base_vae(model):
|
||||
global base_vae, checkpoint_info
|
||||
if base_vae is not None and checkpoint_info == model.sd_checkpoint_info:
|
||||
load_vae_dict(model, base_vae)
|
||||
delete_base_vae()
|
||||
|
||||
|
||||
def get_filename(filepath):
|
||||
return os.path.splitext(os.path.basename(filepath))[0]
|
||||
|
||||
|
||||
def refresh_vae_list(vae_path=vae_path, model_path=model_path):
|
||||
global vae_dict, vae_list
|
||||
res = {}
|
||||
@ -43,6 +82,7 @@ def refresh_vae_list(vae_path=vae_path, model_path=model_path):
|
||||
vae_dict.update(res)
|
||||
return vae_list
|
||||
|
||||
|
||||
def resolve_vae(checkpoint_file, vae_file="auto"):
|
||||
global first_load, vae_dict, vae_list
|
||||
# save_settings = False
|
||||
@ -96,24 +136,26 @@ def resolve_vae(checkpoint_file, vae_file="auto"):
|
||||
|
||||
return vae_file
|
||||
|
||||
def load_vae(model, vae_file):
|
||||
global first_load, vae_dict, vae_list
|
||||
|
||||
def load_vae(model, vae_file=None):
|
||||
global first_load, vae_dict, vae_list, loaded_vae_file
|
||||
# save_settings = False
|
||||
|
||||
if vae_file:
|
||||
print(f"Loading VAE weights from: {vae_file}")
|
||||
vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location)
|
||||
vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys}
|
||||
model.first_stage_model.load_state_dict(vae_dict_1)
|
||||
load_vae_dict(model, vae_dict_1)
|
||||
|
||||
# If vae used is not in dict, update it
|
||||
# It will be removed on refresh though
|
||||
if vae_file is not None:
|
||||
# If vae used is not in dict, update it
|
||||
# It will be removed on refresh though
|
||||
vae_opt = get_filename(vae_file)
|
||||
if vae_opt not in vae_dict:
|
||||
vae_dict[vae_opt] = vae_file
|
||||
vae_list.append(vae_opt)
|
||||
|
||||
loaded_vae_file = vae_file
|
||||
|
||||
"""
|
||||
# Save current VAE to VAE settings, maybe? will it work?
|
||||
if save_settings:
|
||||
@ -124,4 +166,45 @@ def load_vae(model, vae_file):
|
||||
"""
|
||||
|
||||
first_load = False
|
||||
|
||||
|
||||
# don't call this from outside
|
||||
def load_vae_dict(model, vae_dict_1=None):
|
||||
if vae_dict_1:
|
||||
store_base_vae(model)
|
||||
model.first_stage_model.load_state_dict(vae_dict_1)
|
||||
else:
|
||||
restore_base_vae()
|
||||
model.first_stage_model.to(devices.dtype_vae)
|
||||
|
||||
|
||||
def reload_vae_weights(sd_model=None, vae_file="auto"):
|
||||
from modules import lowvram, devices, sd_hijack
|
||||
|
||||
if not sd_model:
|
||||
sd_model = shared.sd_model
|
||||
|
||||
checkpoint_info = sd_model.sd_checkpoint_info
|
||||
checkpoint_file = checkpoint_info.filename
|
||||
vae_file = resolve_vae(checkpoint_file, vae_file=vae_file)
|
||||
|
||||
if loaded_vae_file == vae_file:
|
||||
return
|
||||
|
||||
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
||||
lowvram.send_everything_to_cpu()
|
||||
else:
|
||||
sd_model.to(devices.cpu)
|
||||
|
||||
sd_hijack.model_hijack.undo_hijack(sd_model)
|
||||
|
||||
load_vae(sd_model, vae_file)
|
||||
|
||||
sd_hijack.model_hijack.hijack(sd_model)
|
||||
script_callbacks.model_loaded_callback(sd_model)
|
||||
|
||||
if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
|
||||
sd_model.to(devices.device)
|
||||
|
||||
print(f"VAE Weights loaded.")
|
||||
return sd_model
|
||||
|
4
webui.py
4
webui.py
@ -81,9 +81,7 @@ def initialize():
|
||||
modules.sd_vae.refresh_vae_list()
|
||||
modules.sd_models.load_model()
|
||||
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights()))
|
||||
# I don't know what needs to be done to only reload VAE, with all those hijacks callbacks, and lowvram,
|
||||
# so for now this reloads the whole model too
|
||||
shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(force=True)), call=False)
|
||||
shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
|
||||
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
|
||||
shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user