mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-01 12:25:06 +08:00
fix img2img alt for SD v2.x
This commit is contained in:
parent
a9fed7c364
commit
05ec128ca9
@ -22,7 +22,12 @@ def find_noise_for_image(p, cond, uncond, cfg_scale, steps):
|
||||
x = p.init_latent
|
||||
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
if shared.sd_model.parameterization == "v":
|
||||
dnw = K.external.CompVisVDenoiser(shared.sd_model)
|
||||
skip = 1
|
||||
else:
|
||||
dnw = K.external.CompVisDenoiser(shared.sd_model)
|
||||
skip = 0
|
||||
sigmas = dnw.get_sigmas(steps).flip(0)
|
||||
|
||||
shared.state.sampling_steps = steps
|
||||
@ -37,7 +42,7 @@ def find_noise_for_image(p, cond, uncond, cfg_scale, steps):
|
||||
image_conditioning = torch.cat([p.image_conditioning] * 2)
|
||||
cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]}
|
||||
|
||||
c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)]
|
||||
c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)[skip:]]
|
||||
t = dnw.sigma_to_t(sigma_in)
|
||||
|
||||
eps = shared.sd_model.apply_model(x_in * c_in, t, cond=cond_in)
|
||||
@ -69,7 +74,12 @@ def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps):
|
||||
x = p.init_latent
|
||||
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
if shared.sd_model.parameterization == "v":
|
||||
dnw = K.external.CompVisVDenoiser(shared.sd_model)
|
||||
skip = 1
|
||||
else:
|
||||
dnw = K.external.CompVisDenoiser(shared.sd_model)
|
||||
skip = 0
|
||||
sigmas = dnw.get_sigmas(steps).flip(0)
|
||||
|
||||
shared.state.sampling_steps = steps
|
||||
@ -84,7 +94,7 @@ def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps):
|
||||
image_conditioning = torch.cat([p.image_conditioning] * 2)
|
||||
cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]}
|
||||
|
||||
c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)]
|
||||
c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)[skip:]]
|
||||
|
||||
if i == 1:
|
||||
t = dnw.sigma_to_t(torch.cat([sigmas[i] * s_in] * 2))
|
||||
|
Loading…
Reference in New Issue
Block a user