diff --git a/modules/processing.py b/modules/processing.py index 2bc19f6bf..c9ba6eb3c 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -450,7 +450,27 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear") else: decoded_samples = self.sd_model.decode_first_stage(samples) - decoded_samples = torch.nn.functional.interpolate(decoded_samples, size=(self.height, self.width), mode="bilinear") + + if opts.upscaler_for_hires_fix is None or opts.upscaler_for_hires_fix == "None": + decoded_samples = torch.nn.functional.interpolate(decoded_samples, size=(self.height, self.width), mode="bilinear") + else: + lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0) + + batch_images = [] + for i, x_sample in enumerate(lowres_samples): + x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) + x_sample = x_sample.astype(np.uint8) + image = Image.fromarray(x_sample) + upscaler = [x for x in shared.sd_upscalers if x.name == opts.upscaler_for_hires_fix][0] + image = upscaler.upscale(image, self.width, self.height) + image = np.array(image).astype(np.float32) / 255.0 + image = np.moveaxis(image, 2, 0) + batch_images.append(image) + + decoded_samples = torch.from_numpy(np.array(batch_images)) + decoded_samples = decoded_samples.to(shared.device) + decoded_samples = 2. * decoded_samples - 1. + samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples)) shared.state.nextjob() diff --git a/modules/shared.py b/modules/shared.py index 0b81d7f87..ae4efbeec 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -144,6 +144,7 @@ class Options: "ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for upscaling. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}), "random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}), "upscale_at_full_resolution_padding": OptionInfo(16, "Inpainting at full resolution: padding, in pixels, for the masked region.", gr.Slider, {"minimum": 0, "maximum": 128, "step": 4}), + "upscaler_for_hires_fix": OptionInfo(None, "Upscaler for highres. fix", gr.Radio, lambda: {"choices": [x.name for x in sd_upscalers]}), "show_progressbar": OptionInfo(True, "Show progressbar"), "show_progress_every_n_steps": OptionInfo(0, "Show show image creation progress every N sampling steps. Set 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 32, "step": 1}), "multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job. Broken in PyCharm console."), diff --git a/modules/ui.py b/modules/ui.py index ec6f247e5..752bc97b9 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -396,7 +396,7 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo): enable_hr = gr.Checkbox(label='Highres. fix', value=False) with gr.Row(visible=False) as hr_options: - scale_latent = gr.Checkbox(label='Scale latent', value=True) + scale_latent = gr.Checkbox(label='Scale latent', value=False) denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.7) with gr.Row():