mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-21 13:50:12 +08:00
Merge pull request #12358 from catboxanon/sigma-infotext
Add missing k-diffusion sigma params to infotext
This commit is contained in:
commit
06da34d47a
@ -328,6 +328,10 @@ infotext_to_setting_name_mapping = [
|
|||||||
('Noise multiplier', 'initial_noise_multiplier'),
|
('Noise multiplier', 'initial_noise_multiplier'),
|
||||||
('Eta', 'eta_ancestral'),
|
('Eta', 'eta_ancestral'),
|
||||||
('Eta DDIM', 'eta_ddim'),
|
('Eta DDIM', 'eta_ddim'),
|
||||||
|
('Sigma churn', 's_churn'),
|
||||||
|
('Sigma tmin', 's_tmin'),
|
||||||
|
('Sigma tmax', 's_tmax'),
|
||||||
|
('Sigma noise', 's_noise'),
|
||||||
('Discard penultimate sigma', 'always_discard_next_to_last_sigma'),
|
('Discard penultimate sigma', 'always_discard_next_to_last_sigma'),
|
||||||
('UniPC variant', 'uni_pc_variant'),
|
('UniPC variant', 'uni_pc_variant'),
|
||||||
('UniPC skip type', 'uni_pc_skip_type'),
|
('UniPC skip type', 'uni_pc_skip_type'),
|
||||||
|
@ -4,6 +4,7 @@ import inspect
|
|||||||
import k_diffusion.sampling
|
import k_diffusion.sampling
|
||||||
from modules import prompt_parser, devices, sd_samplers_common, sd_samplers_extra
|
from modules import prompt_parser, devices, sd_samplers_common, sd_samplers_extra
|
||||||
|
|
||||||
|
from modules.processing import StableDiffusionProcessing
|
||||||
from modules.shared import opts, state
|
from modules.shared import opts, state
|
||||||
import modules.shared as shared
|
import modules.shared as shared
|
||||||
from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
|
from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
|
||||||
@ -280,6 +281,14 @@ class KDiffusionSampler:
|
|||||||
self.last_latent = None
|
self.last_latent = None
|
||||||
self.s_min_uncond = None
|
self.s_min_uncond = None
|
||||||
|
|
||||||
|
# NOTE: These are also defined in the StableDiffusionProcessing class.
|
||||||
|
# They should have been here to begin with but we're going to
|
||||||
|
# leave that class __init__ signature alone.
|
||||||
|
self.s_churn = 0.0
|
||||||
|
self.s_tmin = 0.0
|
||||||
|
self.s_tmax = float('inf')
|
||||||
|
self.s_noise = 1.0
|
||||||
|
|
||||||
self.conditioning_key = sd_model.model.conditioning_key
|
self.conditioning_key = sd_model.model.conditioning_key
|
||||||
|
|
||||||
def callback_state(self, d):
|
def callback_state(self, d):
|
||||||
@ -314,7 +323,7 @@ class KDiffusionSampler:
|
|||||||
def number_of_needed_noises(self, p):
|
def number_of_needed_noises(self, p):
|
||||||
return p.steps
|
return p.steps
|
||||||
|
|
||||||
def initialize(self, p):
|
def initialize(self, p: StableDiffusionProcessing):
|
||||||
self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
|
self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
|
||||||
self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
|
self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
|
||||||
self.model_wrap_cfg.step = 0
|
self.model_wrap_cfg.step = 0
|
||||||
@ -335,6 +344,29 @@ class KDiffusionSampler:
|
|||||||
|
|
||||||
extra_params_kwargs['eta'] = self.eta
|
extra_params_kwargs['eta'] = self.eta
|
||||||
|
|
||||||
|
if len(self.extra_params) > 0:
|
||||||
|
s_churn = getattr(opts, 's_churn', p.s_churn)
|
||||||
|
s_tmin = getattr(opts, 's_tmin', p.s_tmin)
|
||||||
|
s_tmax = getattr(opts, 's_tmax', p.s_tmax) or self.s_tmax # 0 = inf
|
||||||
|
s_noise = getattr(opts, 's_noise', p.s_noise)
|
||||||
|
|
||||||
|
if s_churn != self.s_churn:
|
||||||
|
extra_params_kwargs['s_churn'] = s_churn
|
||||||
|
p.s_churn = s_churn
|
||||||
|
p.extra_generation_params['Sigma churn'] = s_churn
|
||||||
|
if s_tmin != self.s_tmin:
|
||||||
|
extra_params_kwargs['s_tmin'] = s_tmin
|
||||||
|
p.s_tmin = s_tmin
|
||||||
|
p.extra_generation_params['Sigma tmin'] = s_tmin
|
||||||
|
if s_tmax != self.s_tmax:
|
||||||
|
extra_params_kwargs['s_tmax'] = s_tmax
|
||||||
|
p.s_tmax = s_tmax
|
||||||
|
p.extra_generation_params['Sigma tmax'] = s_tmax
|
||||||
|
if s_noise != self.s_noise:
|
||||||
|
extra_params_kwargs['s_noise'] = s_noise
|
||||||
|
p.s_noise = s_noise
|
||||||
|
p.extra_generation_params['Sigma noise'] = s_noise
|
||||||
|
|
||||||
return extra_params_kwargs
|
return extra_params_kwargs
|
||||||
|
|
||||||
def get_sigmas(self, p, steps):
|
def get_sigmas(self, p, steps):
|
||||||
|
Loading…
Reference in New Issue
Block a user