mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-02-10 23:52:54 +08:00
improve face detection a lot
This commit is contained in:
parent
59ed744383
commit
0ddaf8d202
@ -8,12 +8,18 @@ GREEN = "#0F0"
|
|||||||
BLUE = "#00F"
|
BLUE = "#00F"
|
||||||
RED = "#F00"
|
RED = "#F00"
|
||||||
|
|
||||||
|
|
||||||
def crop_image(im, settings):
|
def crop_image(im, settings):
|
||||||
""" Intelligently crop an image to the subject matter """
|
""" Intelligently crop an image to the subject matter """
|
||||||
if im.height > im.width:
|
if im.height > im.width:
|
||||||
im = im.resize((settings.crop_width, settings.crop_height * im.height // im.width))
|
im = im.resize((settings.crop_width, settings.crop_height * im.height // im.width))
|
||||||
else:
|
elif im.width > im.height:
|
||||||
im = im.resize((settings.crop_width * im.width // im.height, settings.crop_height))
|
im = im.resize((settings.crop_width * im.width // im.height, settings.crop_height))
|
||||||
|
else:
|
||||||
|
im = im.resize((settings.crop_width, settings.crop_height))
|
||||||
|
|
||||||
|
if im.height == im.width:
|
||||||
|
return im
|
||||||
|
|
||||||
focus = focal_point(im, settings)
|
focus = focal_point(im, settings)
|
||||||
|
|
||||||
@ -78,13 +84,18 @@ def focal_point(im, settings):
|
|||||||
[ PointOfInterest( p.x, p.y, weight=p.weight * ( (face_weight/weight_pref_total) / (len(face_points)/total_points) )) for p in face_points ]
|
[ PointOfInterest( p.x, p.y, weight=p.weight * ( (face_weight/weight_pref_total) / (len(face_points)/total_points) )) for p in face_points ]
|
||||||
)
|
)
|
||||||
|
|
||||||
|
average_point = poi_average(pois, settings)
|
||||||
|
|
||||||
if settings.annotate_image:
|
if settings.annotate_image:
|
||||||
d = ImageDraw.Draw(im)
|
d = ImageDraw.Draw(im)
|
||||||
|
for f in face_points:
|
||||||
average_point = poi_average(pois, settings, im=im)
|
d.rectangle(f.bounding(f.size), outline=RED)
|
||||||
|
for f in entropy_points:
|
||||||
if settings.annotate_image:
|
d.rectangle(f.bounding(30), outline=BLUE)
|
||||||
d.ellipse([average_point.x - 25, average_point.y - 25, average_point.x + 25, average_point.y + 25], outline=GREEN)
|
for poi in pois:
|
||||||
|
w = max(4, 4 * 0.5 * sqrt(poi.weight))
|
||||||
|
d.ellipse(poi.bounding(w), fill=BLUE)
|
||||||
|
d.ellipse(average_point.bounding(25), outline=GREEN)
|
||||||
|
|
||||||
return average_point
|
return average_point
|
||||||
|
|
||||||
@ -92,22 +103,32 @@ def focal_point(im, settings):
|
|||||||
def image_face_points(im, settings):
|
def image_face_points(im, settings):
|
||||||
np_im = np.array(im)
|
np_im = np.array(im)
|
||||||
gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY)
|
gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY)
|
||||||
classifier = cv2.CascadeClassifier(f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml')
|
|
||||||
|
|
||||||
minsize = int(min(im.width, im.height) * 0.15) # at least N percent of the smallest side
|
tries = [
|
||||||
faces = classifier.detectMultiScale(gray, scaleFactor=1.05,
|
[ f'{cv2.data.haarcascades}haarcascade_eye.xml', 0.01 ],
|
||||||
minNeighbors=5, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE)
|
[ f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml', 0.05 ],
|
||||||
|
[ f'{cv2.data.haarcascades}haarcascade_profileface.xml', 0.05 ],
|
||||||
|
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt.xml', 0.05 ],
|
||||||
|
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt2.xml', 0.05 ],
|
||||||
|
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt_tree.xml', 0.05 ],
|
||||||
|
[ f'{cv2.data.haarcascades}haarcascade_eye_tree_eyeglasses.xml', 0.05 ],
|
||||||
|
[ f'{cv2.data.haarcascades}haarcascade_upperbody.xml', 0.05 ]
|
||||||
|
]
|
||||||
|
|
||||||
if len(faces) == 0:
|
for t in tries:
|
||||||
return []
|
# print(t[0])
|
||||||
|
classifier = cv2.CascadeClassifier(t[0])
|
||||||
|
minsize = int(min(im.width, im.height) * t[1]) # at least N percent of the smallest side
|
||||||
|
try:
|
||||||
|
faces = classifier.detectMultiScale(gray, scaleFactor=1.1,
|
||||||
|
minNeighbors=7, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE)
|
||||||
|
except:
|
||||||
|
continue
|
||||||
|
|
||||||
rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces]
|
if len(faces) > 0:
|
||||||
if settings.annotate_image:
|
rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces]
|
||||||
for f in rects:
|
return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0]-r[2])) for r in rects]
|
||||||
d = ImageDraw.Draw(im)
|
return []
|
||||||
d.rectangle(f, outline=RED)
|
|
||||||
|
|
||||||
return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2) for r in rects]
|
|
||||||
|
|
||||||
|
|
||||||
def image_corner_points(im, settings):
|
def image_corner_points(im, settings):
|
||||||
@ -132,8 +153,8 @@ def image_corner_points(im, settings):
|
|||||||
|
|
||||||
focal_points = []
|
focal_points = []
|
||||||
for point in points:
|
for point in points:
|
||||||
x, y = point.ravel()
|
x, y = point.ravel()
|
||||||
focal_points.append(PointOfInterest(x, y))
|
focal_points.append(PointOfInterest(x, y, size=4))
|
||||||
|
|
||||||
return focal_points
|
return focal_points
|
||||||
|
|
||||||
@ -167,31 +188,26 @@ def image_entropy_points(im, settings):
|
|||||||
x_mid = int(crop_best[0] + settings.crop_width/2)
|
x_mid = int(crop_best[0] + settings.crop_width/2)
|
||||||
y_mid = int(crop_best[1] + settings.crop_height/2)
|
y_mid = int(crop_best[1] + settings.crop_height/2)
|
||||||
|
|
||||||
return [PointOfInterest(x_mid, y_mid)]
|
return [PointOfInterest(x_mid, y_mid, size=25)]
|
||||||
|
|
||||||
|
|
||||||
def image_entropy(im):
|
def image_entropy(im):
|
||||||
# greyscale image entropy
|
# greyscale image entropy
|
||||||
band = np.asarray(im.convert("1"))
|
# band = np.asarray(im.convert("L"))
|
||||||
|
band = np.asarray(im.convert("1"), dtype=np.uint8)
|
||||||
hist, _ = np.histogram(band, bins=range(0, 256))
|
hist, _ = np.histogram(band, bins=range(0, 256))
|
||||||
hist = hist[hist > 0]
|
hist = hist[hist > 0]
|
||||||
return -np.log2(hist / hist.sum()).sum()
|
return -np.log2(hist / hist.sum()).sum()
|
||||||
|
|
||||||
|
|
||||||
def poi_average(pois, settings, im=None):
|
def poi_average(pois, settings):
|
||||||
weight = 0.0
|
weight = 0.0
|
||||||
x = 0.0
|
x = 0.0
|
||||||
y = 0.0
|
y = 0.0
|
||||||
for pois in pois:
|
for poi in pois:
|
||||||
if settings.annotate_image and im is not None:
|
weight += poi.weight
|
||||||
w = 4 * 0.5 * sqrt(pois.weight)
|
x += poi.x * poi.weight
|
||||||
d = ImageDraw.Draw(im)
|
y += poi.y * poi.weight
|
||||||
d.ellipse([
|
|
||||||
pois.x - w, pois.y - w,
|
|
||||||
pois.x + w, pois.y + w ], fill=BLUE)
|
|
||||||
weight += pois.weight
|
|
||||||
x += pois.x * pois.weight
|
|
||||||
y += pois.y * pois.weight
|
|
||||||
avg_x = round(x / weight)
|
avg_x = round(x / weight)
|
||||||
avg_y = round(y / weight)
|
avg_y = round(y / weight)
|
||||||
|
|
||||||
@ -199,10 +215,19 @@ def poi_average(pois, settings, im=None):
|
|||||||
|
|
||||||
|
|
||||||
class PointOfInterest:
|
class PointOfInterest:
|
||||||
def __init__(self, x, y, weight=1.0):
|
def __init__(self, x, y, weight=1.0, size=10):
|
||||||
self.x = x
|
self.x = x
|
||||||
self.y = y
|
self.y = y
|
||||||
self.weight = weight
|
self.weight = weight
|
||||||
|
self.size = size
|
||||||
|
|
||||||
|
def bounding(self, size):
|
||||||
|
return [
|
||||||
|
self.x - size//2,
|
||||||
|
self.y - size//2,
|
||||||
|
self.x + size//2,
|
||||||
|
self.y + size//2
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
class Settings:
|
class Settings:
|
||||||
|
Loading…
Reference in New Issue
Block a user