Merge branch 'dev' into test-fp8

This commit is contained in:
Kohaku-Blueleaf 2023-12-14 16:54:45 +08:00
commit 0fb34b57b8
17 changed files with 993 additions and 91 deletions

View File

@ -21,6 +21,8 @@ class NetworkModuleOFT(network.NetworkModule):
self.lin_module = None self.lin_module = None
self.org_module: list[torch.Module] = [self.sd_module] self.org_module: list[torch.Module] = [self.sd_module]
self.scale = 1.0
# kohya-ss # kohya-ss
if "oft_blocks" in weights.w.keys(): if "oft_blocks" in weights.w.keys():
self.is_kohya = True self.is_kohya = True
@ -53,12 +55,18 @@ class NetworkModuleOFT(network.NetworkModule):
self.constraint = None self.constraint = None
self.block_size, self.num_blocks = factorization(self.out_dim, self.dim) self.block_size, self.num_blocks = factorization(self.out_dim, self.dim)
def calc_updown_kb(self, orig_weight, multiplier): def calc_updown(self, orig_weight):
oft_blocks = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype) oft_blocks = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype)
oft_blocks = oft_blocks - oft_blocks.transpose(1, 2) # ensure skew-symmetric orthogonal matrix eye = torch.eye(self.block_size, device=self.oft_blocks.device)
if self.is_kohya:
block_Q = oft_blocks - oft_blocks.transpose(1, 2) # ensure skew-symmetric orthogonal matrix
norm_Q = torch.norm(block_Q.flatten())
new_norm_Q = torch.clamp(norm_Q, max=self.constraint)
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
oft_blocks = torch.matmul(eye + block_Q, (eye - block_Q).float().inverse())
R = oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype) R = oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype)
R = R * multiplier + torch.eye(self.block_size, device=orig_weight.device)
# This errors out for MultiheadAttention, might need to be handled up-stream # This errors out for MultiheadAttention, might need to be handled up-stream
merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size) merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size)
@ -72,26 +80,3 @@ class NetworkModuleOFT(network.NetworkModule):
updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
output_shape = orig_weight.shape output_shape = orig_weight.shape
return self.finalize_updown(updown, orig_weight, output_shape) return self.finalize_updown(updown, orig_weight, output_shape)
def calc_updown(self, orig_weight):
# if alpha is a very small number as in coft, calc_scale() will return a almost zero number so we ignore it
multiplier = self.multiplier()
return self.calc_updown_kb(orig_weight, multiplier)
# override to remove the multiplier/scale factor; it's already multiplied in get_weight
def finalize_updown(self, updown, orig_weight, output_shape, ex_bias=None):
if self.bias is not None:
updown = updown.reshape(self.bias.shape)
updown += self.bias.to(orig_weight.device, dtype=orig_weight.dtype)
updown = updown.reshape(output_shape)
if len(output_shape) == 4:
updown = updown.reshape(output_shape)
if orig_weight.size().numel() == updown.size().numel():
updown = updown.reshape(orig_weight.shape)
if ex_bias is not None:
ex_bias = ex_bias * self.multiplier()
return updown, ex_bias

View File

@ -159,7 +159,8 @@ def load_network(name, network_on_disk):
bundle_embeddings = {} bundle_embeddings = {}
for key_network, weight in sd.items(): for key_network, weight in sd.items():
key_network_without_network_parts, network_part = key_network.split(".", 1) key_network_without_network_parts, _, network_part = key_network.partition(".")
if key_network_without_network_parts == "bundle_emb": if key_network_without_network_parts == "bundle_emb":
emb_name, vec_name = network_part.split(".", 1) emb_name, vec_name = network_part.split(".", 1)
emb_dict = bundle_embeddings.get(emb_name, {}) emb_dict = bundle_embeddings.get(emb_name, {})

View File

@ -23,11 +23,12 @@ class ExtraOptionsSection(scripts.Script):
self.setting_names = [] self.setting_names = []
self.infotext_fields = [] self.infotext_fields = []
extra_options = shared.opts.extra_options_img2img if is_img2img else shared.opts.extra_options_txt2img extra_options = shared.opts.extra_options_img2img if is_img2img else shared.opts.extra_options_txt2img
elem_id_tabname = "extra_options_" + ("img2img" if is_img2img else "txt2img")
mapping = {k: v for v, k in generation_parameters_copypaste.infotext_to_setting_name_mapping} mapping = {k: v for v, k in generation_parameters_copypaste.infotext_to_setting_name_mapping}
with gr.Blocks() as interface: with gr.Blocks() as interface:
with gr.Accordion("Options", open=False) if shared.opts.extra_options_accordion and extra_options else gr.Group(): with gr.Accordion("Options", open=False, elem_id=elem_id_tabname) if shared.opts.extra_options_accordion and extra_options else gr.Group(elem_id=elem_id_tabname):
row_count = math.ceil(len(extra_options) / shared.opts.extra_options_cols) row_count = math.ceil(len(extra_options) / shared.opts.extra_options_cols)
@ -70,7 +71,7 @@ This page allows you to add some settings to the main interface of txt2img and i
"""), """),
"extra_options_txt2img": shared.OptionInfo([], "Settings for txt2img", ui_components.DropdownMulti, lambda: {"choices": list(shared.opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that also appear in txt2img interfaces").needs_reload_ui(), "extra_options_txt2img": shared.OptionInfo([], "Settings for txt2img", ui_components.DropdownMulti, lambda: {"choices": list(shared.opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that also appear in txt2img interfaces").needs_reload_ui(),
"extra_options_img2img": shared.OptionInfo([], "Settings for img2img", ui_components.DropdownMulti, lambda: {"choices": list(shared.opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that also appear in img2img interfaces").needs_reload_ui(), "extra_options_img2img": shared.OptionInfo([], "Settings for img2img", ui_components.DropdownMulti, lambda: {"choices": list(shared.opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that also appear in img2img interfaces").needs_reload_ui(),
"extra_options_cols": shared.OptionInfo(1, "Number of columns for added settings", gr.Number, {"precision": 0}).needs_reload_ui(), "extra_options_cols": shared.OptionInfo(1, "Number of columns for added settings", gr.Slider, {"step": 1, "minimum": 1, "maximum": 20}).info("displayed amount will depend on the actual browser window width").needs_reload_ui(),
"extra_options_accordion": shared.OptionInfo(False, "Place added settings into an accordion").needs_reload_ui() "extra_options_accordion": shared.OptionInfo(False, "Place added settings into an accordion").needs_reload_ui()
})) }))

View File

@ -34,7 +34,7 @@ function updateOnBackgroundChange() {
if (modalImage && modalImage.offsetParent) { if (modalImage && modalImage.offsetParent) {
let currentButton = selected_gallery_button(); let currentButton = selected_gallery_button();
let preview = gradioApp().querySelectorAll('.livePreview > img'); let preview = gradioApp().querySelectorAll('.livePreview > img');
if (preview.length > 0) { if (opts.js_live_preview_in_modal_lightbox && preview.length > 0) {
// show preview image if available // show preview image if available
modalImage.src = preview[preview.length - 1].src; modalImage.src = preview[preview.length - 1].src;
} else if (currentButton?.children?.length > 0 && modalImage.src != currentButton.children[0].src) { } else if (currentButton?.children?.length > 0 && modalImage.src != currentButton.children[0].src) {

View File

@ -215,9 +215,33 @@ function restoreProgressImg2img() {
} }
/**
* Configure the width and height elements on `tabname` to accept
* pasting of resolutions in the form of "width x height".
*/
function setupResolutionPasting(tabname) {
var width = gradioApp().querySelector(`#${tabname}_width input[type=number]`);
var height = gradioApp().querySelector(`#${tabname}_height input[type=number]`);
for (const el of [width, height]) {
el.addEventListener('paste', function(event) {
var pasteData = event.clipboardData.getData('text/plain');
var parsed = pasteData.match(/^\s*(\d+)\D+(\d+)\s*$/);
if (parsed) {
width.value = parsed[1];
height.value = parsed[2];
updateInput(width);
updateInput(height);
event.preventDefault();
}
});
}
}
onUiLoaded(function() { onUiLoaded(function() {
showRestoreProgressButton('txt2img', localGet("txt2img_task_id")); showRestoreProgressButton('txt2img', localGet("txt2img_task_id"));
showRestoreProgressButton('img2img', localGet("img2img_task_id")); showRestoreProgressButton('img2img', localGet("img2img_task_id"));
setupResolutionPasting('txt2img');
setupResolutionPasting('img2img');
}); });

View File

@ -791,3 +791,4 @@ def flatten(img, bgcolor):
img = background img = background
return img.convert('RGB') return img.convert('RGB')

View File

@ -62,28 +62,35 @@ def apply_color_correction(correction, original_image):
return image.convert('RGB') return image.convert('RGB')
def apply_overlay(image, paste_loc, index, overlays): def uncrop(image, dest_size, paste_loc):
if overlays is None or index >= len(overlays):
return image
overlay = overlays[index]
if paste_loc is not None:
x, y, w, h = paste_loc x, y, w, h = paste_loc
base_image = Image.new('RGBA', (overlay.width, overlay.height)) base_image = Image.new('RGBA', dest_size)
image = images.resize_image(1, image, w, h) image = images.resize_image(1, image, w, h)
base_image.paste(image, (x, y)) base_image.paste(image, (x, y))
image = base_image image = base_image
return image
def apply_overlay(image, paste_loc, overlay):
if overlay is None:
return image
if paste_loc is not None:
image = uncrop(image, (overlay.width, overlay.height), paste_loc)
image = image.convert('RGBA') image = image.convert('RGBA')
image.alpha_composite(overlay) image.alpha_composite(overlay)
image = image.convert('RGB') image = image.convert('RGB')
return image return image
def create_binary_mask(image): def create_binary_mask(image, round=True):
if image.mode == 'RGBA' and image.getextrema()[-1] != (255, 255): if image.mode == 'RGBA' and image.getextrema()[-1] != (255, 255):
if round:
image = image.split()[-1].convert("L").point(lambda x: 255 if x > 128 else 0) image = image.split()[-1].convert("L").point(lambda x: 255 if x > 128 else 0)
else:
image = image.split()[-1].convert("L")
else: else:
image = image.convert('L') image = image.convert('L')
return image return image
@ -308,7 +315,7 @@ class StableDiffusionProcessing:
c_adm = torch.cat((c_adm, noise_level_emb), 1) c_adm = torch.cat((c_adm, noise_level_emb), 1)
return c_adm return c_adm
def inpainting_image_conditioning(self, source_image, latent_image, image_mask=None): def inpainting_image_conditioning(self, source_image, latent_image, image_mask=None, round_image_mask=True):
self.is_using_inpainting_conditioning = True self.is_using_inpainting_conditioning = True
# Handle the different mask inputs # Handle the different mask inputs
@ -320,8 +327,10 @@ class StableDiffusionProcessing:
conditioning_mask = conditioning_mask.astype(np.float32) / 255.0 conditioning_mask = conditioning_mask.astype(np.float32) / 255.0
conditioning_mask = torch.from_numpy(conditioning_mask[None, None]) conditioning_mask = torch.from_numpy(conditioning_mask[None, None])
# Inpainting model uses a discretized mask as input, so we round to either 1.0 or 0.0 if round_image_mask:
# Caller is requesting a discretized mask as input, so we round to either 1.0 or 0.0
conditioning_mask = torch.round(conditioning_mask) conditioning_mask = torch.round(conditioning_mask)
else: else:
conditioning_mask = source_image.new_ones(1, 1, *source_image.shape[-2:]) conditioning_mask = source_image.new_ones(1, 1, *source_image.shape[-2:])
@ -345,7 +354,7 @@ class StableDiffusionProcessing:
return image_conditioning return image_conditioning
def img2img_image_conditioning(self, source_image, latent_image, image_mask=None): def img2img_image_conditioning(self, source_image, latent_image, image_mask=None, round_image_mask=True):
source_image = devices.cond_cast_float(source_image) source_image = devices.cond_cast_float(source_image)
# HACK: Using introspection as the Depth2Image model doesn't appear to uniquely # HACK: Using introspection as the Depth2Image model doesn't appear to uniquely
@ -357,7 +366,7 @@ class StableDiffusionProcessing:
return self.edit_image_conditioning(source_image) return self.edit_image_conditioning(source_image)
if self.sampler.conditioning_key in {'hybrid', 'concat'}: if self.sampler.conditioning_key in {'hybrid', 'concat'}:
return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask) return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask, round_image_mask=round_image_mask)
if self.sampler.conditioning_key == "crossattn-adm": if self.sampler.conditioning_key == "crossattn-adm":
return self.unclip_image_conditioning(source_image) return self.unclip_image_conditioning(source_image)
@ -867,6 +876,11 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
with devices.without_autocast() if devices.unet_needs_upcast else devices.autocast(): with devices.without_autocast() if devices.unet_needs_upcast else devices.autocast():
samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts) samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)
if p.scripts is not None:
ps = scripts.PostSampleArgs(samples_ddim)
p.scripts.post_sample(p, ps)
samples_ddim = ps.samples
if getattr(samples_ddim, 'already_decoded', False): if getattr(samples_ddim, 'already_decoded', False):
x_samples_ddim = samples_ddim x_samples_ddim = samples_ddim
else: else:
@ -922,13 +936,31 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
pp = scripts.PostprocessImageArgs(image) pp = scripts.PostprocessImageArgs(image)
p.scripts.postprocess_image(p, pp) p.scripts.postprocess_image(p, pp)
image = pp.image image = pp.image
mask_for_overlay = getattr(p, "mask_for_overlay", None)
overlay_image = p.overlay_images[i] if getattr(p, "overlay_images", None) is not None and i < len(p.overlay_images) else None
if p.scripts is not None:
ppmo = scripts.PostProcessMaskOverlayArgs(i, mask_for_overlay, overlay_image)
p.scripts.postprocess_maskoverlay(p, ppmo)
mask_for_overlay, overlay_image = ppmo.mask_for_overlay, ppmo.overlay_image
if p.color_corrections is not None and i < len(p.color_corrections): if p.color_corrections is not None and i < len(p.color_corrections):
if save_samples and opts.save_images_before_color_correction: if save_samples and opts.save_images_before_color_correction:
image_without_cc = apply_overlay(image, p.paste_to, i, p.overlay_images) image_without_cc = apply_overlay(image, p.paste_to, overlay_image)
images.save_image(image_without_cc, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-before-color-correction") images.save_image(image_without_cc, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-before-color-correction")
image = apply_color_correction(p.color_corrections[i], image) image = apply_color_correction(p.color_corrections[i], image)
image = apply_overlay(image, p.paste_to, i, p.overlay_images) # If the intention is to show the output from the model
# that is being composited over the original image,
# we need to keep the original image around
# and use it in the composite step.
original_denoised_image = image.copy()
if p.paste_to is not None:
original_denoised_image = uncrop(original_denoised_image, (overlay_image.width, overlay_image.height), p.paste_to)
image = apply_overlay(image, p.paste_to, overlay_image)
if save_samples: if save_samples:
images.save_image(image, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p) images.save_image(image, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p)
@ -938,16 +970,17 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
if opts.enable_pnginfo: if opts.enable_pnginfo:
image.info["parameters"] = text image.info["parameters"] = text
output_images.append(image) output_images.append(image)
if hasattr(p, 'mask_for_overlay') and p.mask_for_overlay:
if mask_for_overlay is not None:
if opts.return_mask or opts.save_mask: if opts.return_mask or opts.save_mask:
image_mask = p.mask_for_overlay.convert('RGB') image_mask = mask_for_overlay.convert('RGB')
if save_samples and opts.save_mask: if save_samples and opts.save_mask:
images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask") images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask")
if opts.return_mask: if opts.return_mask:
output_images.append(image_mask) output_images.append(image_mask)
if opts.return_mask_composite or opts.save_mask_composite: if opts.return_mask_composite or opts.save_mask_composite:
image_mask_composite = Image.composite(image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, p.mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA') image_mask_composite = Image.composite(original_denoised_image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA')
if save_samples and opts.save_mask_composite: if save_samples and opts.save_mask_composite:
images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask-composite") images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask-composite")
if opts.return_mask_composite: if opts.return_mask_composite:
@ -1351,6 +1384,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
mask_blur_x: int = 4 mask_blur_x: int = 4
mask_blur_y: int = 4 mask_blur_y: int = 4
mask_blur: int = None mask_blur: int = None
mask_round: bool = True
inpainting_fill: int = 0 inpainting_fill: int = 0
inpaint_full_res: bool = True inpaint_full_res: bool = True
inpaint_full_res_padding: int = 0 inpaint_full_res_padding: int = 0
@ -1396,7 +1430,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
if image_mask is not None: if image_mask is not None:
# image_mask is passed in as RGBA by Gradio to support alpha masks, # image_mask is passed in as RGBA by Gradio to support alpha masks,
# but we still want to support binary masks. # but we still want to support binary masks.
image_mask = create_binary_mask(image_mask) image_mask = create_binary_mask(image_mask, round=self.mask_round)
if self.inpainting_mask_invert: if self.inpainting_mask_invert:
image_mask = ImageOps.invert(image_mask) image_mask = ImageOps.invert(image_mask)
@ -1503,6 +1537,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2])) latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255 latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
latmask = latmask[0] latmask = latmask[0]
if self.mask_round:
latmask = np.around(latmask) latmask = np.around(latmask)
latmask = np.tile(latmask[None], (4, 1, 1)) latmask = np.tile(latmask[None], (4, 1, 1))
@ -1515,7 +1550,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
elif self.inpainting_fill == 3: elif self.inpainting_fill == 3:
self.init_latent = self.init_latent * self.mask self.init_latent = self.init_latent * self.mask
self.image_conditioning = self.img2img_image_conditioning(image * 2 - 1, self.init_latent, image_mask) self.image_conditioning = self.img2img_image_conditioning(image * 2 - 1, self.init_latent, image_mask, self.mask_round)
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts): def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
x = self.rng.next() x = self.rng.next()
@ -1527,7 +1562,14 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning) samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
if self.mask is not None: if self.mask is not None:
samples = samples * self.nmask + self.init_latent * self.mask blended_samples = samples * self.nmask + self.init_latent * self.mask
if self.scripts is not None:
mba = scripts.MaskBlendArgs(samples, self.nmask, self.init_latent, self.mask, blended_samples)
self.scripts.on_mask_blend(self, mba)
blended_samples = mba.blended_latent
samples = blended_samples
del x del x
devices.torch_gc() devices.torch_gc()

View File

@ -11,11 +11,31 @@ from modules import shared, paths, script_callbacks, extensions, script_loading,
AlwaysVisible = object() AlwaysVisible = object()
class MaskBlendArgs:
def __init__(self, current_latent, nmask, init_latent, mask, blended_latent, denoiser=None, sigma=None):
self.current_latent = current_latent
self.nmask = nmask
self.init_latent = init_latent
self.mask = mask
self.blended_latent = blended_latent
self.denoiser = denoiser
self.is_final_blend = denoiser is None
self.sigma = sigma
class PostSampleArgs:
def __init__(self, samples):
self.samples = samples
class PostprocessImageArgs: class PostprocessImageArgs:
def __init__(self, image): def __init__(self, image):
self.image = image self.image = image
class PostProcessMaskOverlayArgs:
def __init__(self, index, mask_for_overlay, overlay_image):
self.index = index
self.mask_for_overlay = mask_for_overlay
self.overlay_image = overlay_image
class PostprocessBatchListArgs: class PostprocessBatchListArgs:
def __init__(self, images): def __init__(self, images):
@ -206,6 +226,25 @@ class Script:
pass pass
def on_mask_blend(self, p, mba: MaskBlendArgs, *args):
"""
Called in inpainting mode when the original content is blended with the inpainted content.
This is called at every step in the denoising process and once at the end.
If is_final_blend is true, this is called for the final blending stage.
Otherwise, denoiser and sigma are defined and may be used to inform the procedure.
"""
pass
def post_sample(self, p, ps: PostSampleArgs, *args):
"""
Called after the samples have been generated,
but before they have been decoded by the VAE, if applicable.
Check getattr(samples, 'already_decoded', False) to test if the images are decoded.
"""
pass
def postprocess_image(self, p, pp: PostprocessImageArgs, *args): def postprocess_image(self, p, pp: PostprocessImageArgs, *args):
""" """
Called for every image after it has been generated. Called for every image after it has been generated.
@ -213,6 +252,13 @@ class Script:
pass pass
def postprocess_maskoverlay(self, p, ppmo: PostProcessMaskOverlayArgs, *args):
"""
Called for every image after it has been generated.
"""
pass
def postprocess(self, p, processed, *args): def postprocess(self, p, processed, *args):
""" """
This function is called after processing ends for AlwaysVisible scripts. This function is called after processing ends for AlwaysVisible scripts.
@ -767,6 +813,22 @@ class ScriptRunner:
except Exception: except Exception:
errors.report(f"Error running postprocess_batch_list: {script.filename}", exc_info=True) errors.report(f"Error running postprocess_batch_list: {script.filename}", exc_info=True)
def post_sample(self, p, ps: PostSampleArgs):
for script in self.alwayson_scripts:
try:
script_args = p.script_args[script.args_from:script.args_to]
script.post_sample(p, ps, *script_args)
except Exception:
errors.report(f"Error running post_sample: {script.filename}", exc_info=True)
def on_mask_blend(self, p, mba: MaskBlendArgs):
for script in self.alwayson_scripts:
try:
script_args = p.script_args[script.args_from:script.args_to]
script.on_mask_blend(p, mba, *script_args)
except Exception:
errors.report(f"Error running post_sample: {script.filename}", exc_info=True)
def postprocess_image(self, p, pp: PostprocessImageArgs): def postprocess_image(self, p, pp: PostprocessImageArgs):
for script in self.alwayson_scripts: for script in self.alwayson_scripts:
try: try:
@ -775,6 +837,14 @@ class ScriptRunner:
except Exception: except Exception:
errors.report(f"Error running postprocess_image: {script.filename}", exc_info=True) errors.report(f"Error running postprocess_image: {script.filename}", exc_info=True)
def postprocess_maskoverlay(self, p, ppmo: PostProcessMaskOverlayArgs):
for script in self.alwayson_scripts:
try:
script_args = p.script_args[script.args_from:script.args_to]
script.postprocess_maskoverlay(p, ppmo, *script_args)
except Exception:
errors.report(f"Error running postprocess_image: {script.filename}", exc_info=True)
def before_component(self, component, **kwargs): def before_component(self, component, **kwargs):
for callback, script in self.on_before_component_elem_id.get(kwargs.get("elem_id"), []): for callback, script in self.on_before_component_elem_id.get(kwargs.get("elem_id"), []):
try: try:

View File

@ -215,7 +215,7 @@ class LoadStateDictOnMeta(ReplaceHelper):
would be on the meta device. would be on the meta device.
""" """
if state_dict == sd: if state_dict is sd:
state_dict = {k: v.to(device="meta", dtype=v.dtype) for k, v in state_dict.items()} state_dict = {k: v.to(device="meta", dtype=v.dtype) for k, v in state_dict.items()}
original(module, state_dict, strict=strict) original(module, state_dict, strict=strict)

View File

@ -56,6 +56,9 @@ class CFGDenoiser(torch.nn.Module):
self.sampler = sampler self.sampler = sampler
self.model_wrap = None self.model_wrap = None
self.p = None self.p = None
# NOTE: masking before denoising can cause the original latents to be oversmoothed
# as the original latents do not have noise
self.mask_before_denoising = False self.mask_before_denoising = False
@property @property
@ -105,8 +108,21 @@ class CFGDenoiser(torch.nn.Module):
assert not is_edit_model or all(len(conds) == 1 for conds in conds_list), "AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0)" assert not is_edit_model or all(len(conds) == 1 for conds in conds_list), "AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0)"
# If we use masks, blending between the denoised and original latent images occurs here.
def apply_blend(current_latent):
blended_latent = current_latent * self.nmask + self.init_latent * self.mask
if self.p.scripts is not None:
from modules import scripts
mba = scripts.MaskBlendArgs(current_latent, self.nmask, self.init_latent, self.mask, blended_latent, denoiser=self, sigma=sigma)
self.p.scripts.on_mask_blend(self.p, mba)
blended_latent = mba.blended_latent
return blended_latent
# Blend in the original latents (before)
if self.mask_before_denoising and self.mask is not None: if self.mask_before_denoising and self.mask is not None:
x = self.init_latent * self.mask + self.nmask * x x = apply_blend(x)
batch_size = len(conds_list) batch_size = len(conds_list)
repeats = [len(conds_list[i]) for i in range(batch_size)] repeats = [len(conds_list[i]) for i in range(batch_size)]
@ -207,8 +223,9 @@ class CFGDenoiser(torch.nn.Module):
else: else:
denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale) denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
# Blend in the original latents (after)
if not self.mask_before_denoising and self.mask is not None: if not self.mask_before_denoising and self.mask is not None:
denoised = self.init_latent * self.mask + self.nmask * denoised denoised = apply_blend(denoised)
self.sampler.last_latent = self.get_pred_x0(torch.cat([x_in[i:i + 1] for i in denoised_image_indexes]), torch.cat([x_out[i:i + 1] for i in denoised_image_indexes]), sigma) self.sampler.last_latent = self.get_pred_x0(torch.cat([x_in[i:i + 1] for i in denoised_image_indexes]), torch.cat([x_out[i:i + 1] for i in denoised_image_indexes]), sigma)

View File

@ -258,6 +258,7 @@ options_templates.update(options_section(('ui_prompt_editing', "Prompt editing",
"keyedit_precision_extra": OptionInfo(0.05, "Precision for <extra networks:0.9> when editing the prompt with Ctrl+up/down", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}), "keyedit_precision_extra": OptionInfo(0.05, "Precision for <extra networks:0.9> when editing the prompt with Ctrl+up/down", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
"keyedit_delimiters": OptionInfo(r".,\/!?%^*;:{}=`~() ", "Word delimiters when editing the prompt with Ctrl+up/down"), "keyedit_delimiters": OptionInfo(r".,\/!?%^*;:{}=`~() ", "Word delimiters when editing the prompt with Ctrl+up/down"),
"keyedit_delimiters_whitespace": OptionInfo(["Tab", "Carriage Return", "Line Feed"], "Ctrl+up/down whitespace delimiters", gr.CheckboxGroup, lambda: {"choices": ["Tab", "Carriage Return", "Line Feed"]}), "keyedit_delimiters_whitespace": OptionInfo(["Tab", "Carriage Return", "Line Feed"], "Ctrl+up/down whitespace delimiters", gr.CheckboxGroup, lambda: {"choices": ["Tab", "Carriage Return", "Line Feed"]}),
"keyedit_move": OptionInfo(True, "Alt+left/right moves prompt elements"),
"disable_token_counters": OptionInfo(False, "Disable prompt token counters").needs_reload_ui(), "disable_token_counters": OptionInfo(False, "Disable prompt token counters").needs_reload_ui(),
})) }))
@ -332,6 +333,7 @@ options_templates.update(options_section(('ui', "Live previews", "ui"), {
"live_preview_content": OptionInfo("Prompt", "Live preview subject", gr.Radio, {"choices": ["Combined", "Prompt", "Negative prompt"]}), "live_preview_content": OptionInfo("Prompt", "Live preview subject", gr.Radio, {"choices": ["Combined", "Prompt", "Negative prompt"]}),
"live_preview_refresh_period": OptionInfo(1000, "Progressbar and preview update period").info("in milliseconds"), "live_preview_refresh_period": OptionInfo(1000, "Progressbar and preview update period").info("in milliseconds"),
"live_preview_fast_interrupt": OptionInfo(False, "Return image with chosen live preview method on interrupt").info("makes interrupts faster"), "live_preview_fast_interrupt": OptionInfo(False, "Return image with chosen live preview method on interrupt").info("makes interrupts faster"),
"js_live_preview_in_modal_lightbox": OptionInfo(True, "Show Live preview in full page image viewer"),
})) }))
options_templates.update(options_section(('sampler-params', "Sampler parameters", "sd"), { options_templates.update(options_section(('sampler-params', "Sampler parameters", "sd"), {

View File

@ -98,10 +98,8 @@ class StyleDatabase:
self.path = path self.path = path
folder, file = os.path.split(self.path) folder, file = os.path.split(self.path)
self.default_file = file.split("*")[0] + ".csv" filename, _, ext = file.partition('*')
if self.default_file == ".csv": self.default_path = os.path.join(folder, filename + ext)
self.default_file = "styles.csv"
self.default_path = os.path.join(folder, self.default_file)
self.prompt_fields = [field for field in PromptStyle._fields if field != "path"] self.prompt_fields = [field for field in PromptStyle._fields if field != "path"]
@ -155,10 +153,8 @@ class StyleDatabase:
row["name"], prompt, negative_prompt, path row["name"], prompt, negative_prompt, path
) )
def get_style_paths(self) -> list(): def get_style_paths(self) -> set:
""" """Returns a set of all distinct paths of files that styles are loaded from."""
Returns a list of all distinct paths, including the default path, of
files that styles are loaded from."""
# Update any styles without a path to the default path # Update any styles without a path to the default path
for style in list(self.styles.values()): for style in list(self.styles.values()):
if not style.path: if not style.path:
@ -172,9 +168,9 @@ class StyleDatabase:
style_paths.add(style.path) style_paths.add(style.path)
# Remove any paths for styles that are just list dividers # Remove any paths for styles that are just list dividers
style_paths.remove("do_not_save") style_paths.discard("do_not_save")
return list(style_paths) return style_paths
def get_style_prompts(self, styles): def get_style_prompts(self, styles):
return [self.styles.get(x, self.no_style).prompt for x in styles] return [self.styles.get(x, self.no_style).prompt for x in styles]
@ -196,20 +192,7 @@ class StyleDatabase:
# The path argument is deprecated, but kept for backwards compatibility # The path argument is deprecated, but kept for backwards compatibility
_ = path _ = path
# Update any styles without a path to the default path style_paths = self.get_style_paths()
for style in list(self.styles.values()):
if not style.path:
self.styles[style.name] = style._replace(path=self.default_path)
# Create a list of all distinct paths, including the default path
style_paths = set()
style_paths.add(self.default_path)
for _, style in self.styles.items():
if style.path:
style_paths.add(style.path)
# Remove any paths for styles that are just list dividers
style_paths.remove("do_not_save")
csv_names = [os.path.split(path)[1].lower() for path in style_paths] csv_names = [os.path.split(path)[1].lower() for path in style_paths]

View File

@ -79,11 +79,11 @@ class Toprow:
def create_prompts(self): def create_prompts(self):
with gr.Column(elem_id=f"{self.id_part}_prompt_container", elem_classes=["prompt-container-compact"] if self.is_compact else [], scale=6): with gr.Column(elem_id=f"{self.id_part}_prompt_container", elem_classes=["prompt-container-compact"] if self.is_compact else [], scale=6):
with gr.Row(elem_id=f"{self.id_part}_prompt_row", elem_classes=["prompt-row"]): with gr.Row(elem_id=f"{self.id_part}_prompt_row", elem_classes=["prompt-row"]):
self.prompt = gr.Textbox(label="Prompt", elem_id=f"{self.id_part}_prompt", show_label=False, lines=3, placeholder="Prompt (press Ctrl+Enter or Alt+Enter to generate)", elem_classes=["prompt"]) self.prompt = gr.Textbox(label="Prompt", elem_id=f"{self.id_part}_prompt", show_label=False, lines=3, placeholder="Prompt\n(Press Ctrl+Enter to generate, Alt+Enter to skip, Esc to interrupt)", elem_classes=["prompt"])
self.prompt_img = gr.File(label="", elem_id=f"{self.id_part}_prompt_image", file_count="single", type="binary", visible=False) self.prompt_img = gr.File(label="", elem_id=f"{self.id_part}_prompt_image", file_count="single", type="binary", visible=False)
with gr.Row(elem_id=f"{self.id_part}_neg_prompt_row", elem_classes=["prompt-row"]): with gr.Row(elem_id=f"{self.id_part}_neg_prompt_row", elem_classes=["prompt-row"]):
self.negative_prompt = gr.Textbox(label="Negative prompt", elem_id=f"{self.id_part}_neg_prompt", show_label=False, lines=3, placeholder="Negative prompt (press Ctrl+Enter or Alt+Enter to generate)", elem_classes=["prompt"]) self.negative_prompt = gr.Textbox(label="Negative prompt", elem_id=f"{self.id_part}_neg_prompt", show_label=False, lines=3, placeholder="Negative prompt\n(Press Ctrl+Enter to generate, Alt+Enter to skip, Esc to interrupt)", elem_classes=["prompt"])
self.prompt_img.change( self.prompt_img.change(
fn=modules.images.image_data, fn=modules.images.image_data,

View File

@ -48,3 +48,12 @@ if has_xpu:
CondFunc('torch.nn.modules.conv.Conv2d.forward', CondFunc('torch.nn.modules.conv.Conv2d.forward',
lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)), lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
lambda orig_func, self, input: input.dtype != self.weight.data.dtype) lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
CondFunc('torch.bmm',
lambda orig_func, input, mat2, out=None: orig_func(input.to(mat2.dtype), mat2, out=out),
lambda orig_func, input, mat2, out=None: input.dtype != mat2.dtype)
CondFunc('torch.cat',
lambda orig_func, tensors, dim=0, out=None: orig_func([t.to(tensors[0].dtype) for t in tensors], dim=dim, out=out),
lambda orig_func, tensors, dim=0, out=None: not all(t.dtype == tensors[0].dtype for t in tensors))
CondFunc('torch.nn.functional.scaled_dot_product_attention',
lambda orig_func, query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False: orig_func(query, key.to(query.dtype), value.to(query.dtype), attn_mask, dropout_p, is_causal),
lambda orig_func, query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False: query.dtype != key.dtype or query.dtype != value.dtype)

View File

@ -121,16 +121,22 @@ document.addEventListener("DOMContentLoaded", function() {
}); });
/** /**
* Add a ctrl+enter as a shortcut to start a generation * Add keyboard shortcuts:
* Ctrl+Enter to start/restart a generation
* Alt/Option+Enter to skip a generation
* Esc to interrupt a generation
*/ */
document.addEventListener('keydown', function(e) { document.addEventListener('keydown', function(e) {
const isEnter = e.key === 'Enter' || e.keyCode === 13; const isEnter = e.key === 'Enter' || e.keyCode === 13;
const isModifierKey = e.metaKey || e.ctrlKey || e.altKey; const isCtrlKey = e.metaKey || e.ctrlKey;
const isAltKey = e.altKey;
const isEsc = e.key === 'Escape';
const interruptButton = get_uiCurrentTabContent().querySelector('button[id$=_interrupt]');
const generateButton = get_uiCurrentTabContent().querySelector('button[id$=_generate]'); const generateButton = get_uiCurrentTabContent().querySelector('button[id$=_generate]');
const interruptButton = get_uiCurrentTabContent().querySelector('button[id$=_interrupt]');
const skipButton = get_uiCurrentTabContent().querySelector('button[id$=_skip]');
if (isEnter && isModifierKey) { if (isCtrlKey && isEnter) {
if (interruptButton.style.display === 'block') { if (interruptButton.style.display === 'block') {
interruptButton.click(); interruptButton.click();
const callback = (mutationList) => { const callback = (mutationList) => {
@ -150,6 +156,21 @@ document.addEventListener('keydown', function(e) {
} }
e.preventDefault(); e.preventDefault();
} }
if (isAltKey && isEnter) {
skipButton.click();
e.preventDefault();
}
if (isEsc) {
const globalPopup = document.querySelector('.global-popup');
const lightboxModal = document.querySelector('#lightboxModal');
if (!globalPopup || globalPopup.style.display === 'none') {
if (document.activeElement === lightboxModal) return;
interruptButton.click();
e.preventDefault();
}
}
}); });
/** /**

747
scripts/soft_inpainting.py Normal file
View File

@ -0,0 +1,747 @@
import numpy as np
import gradio as gr
import math
from modules.ui_components import InputAccordion
import modules.scripts as scripts
class SoftInpaintingSettings:
def __init__(self,
mask_blend_power,
mask_blend_scale,
inpaint_detail_preservation,
composite_mask_influence,
composite_difference_threshold,
composite_difference_contrast):
self.mask_blend_power = mask_blend_power
self.mask_blend_scale = mask_blend_scale
self.inpaint_detail_preservation = inpaint_detail_preservation
self.composite_mask_influence = composite_mask_influence
self.composite_difference_threshold = composite_difference_threshold
self.composite_difference_contrast = composite_difference_contrast
def add_generation_params(self, dest):
dest[enabled_gen_param_label] = True
dest[gen_param_labels.mask_blend_power] = self.mask_blend_power
dest[gen_param_labels.mask_blend_scale] = self.mask_blend_scale
dest[gen_param_labels.inpaint_detail_preservation] = self.inpaint_detail_preservation
dest[gen_param_labels.composite_mask_influence] = self.composite_mask_influence
dest[gen_param_labels.composite_difference_threshold] = self.composite_difference_threshold
dest[gen_param_labels.composite_difference_contrast] = self.composite_difference_contrast
# ------------------- Methods -------------------
def processing_uses_inpainting(p):
# TODO: Figure out a better way to determine if inpainting is being used by p
if getattr(p, "image_mask", None) is not None:
return True
if getattr(p, "mask", None) is not None:
return True
if getattr(p, "nmask", None) is not None:
return True
return False
def latent_blend(settings, a, b, t):
"""
Interpolates two latent image representations according to the parameter t,
where the interpolated vectors' magnitudes are also interpolated separately.
The "detail_preservation" factor biases the magnitude interpolation towards
the larger of the two magnitudes.
"""
import torch
# NOTE: We use inplace operations wherever possible.
# [4][w][h] to [1][4][w][h]
t2 = t.unsqueeze(0)
# [4][w][h] to [1][1][w][h] - the [4] seem redundant.
t3 = t[0].unsqueeze(0).unsqueeze(0)
one_minus_t2 = 1 - t2
one_minus_t3 = 1 - t3
# Linearly interpolate the image vectors.
a_scaled = a * one_minus_t2
b_scaled = b * t2
image_interp = a_scaled
image_interp.add_(b_scaled)
result_type = image_interp.dtype
del a_scaled, b_scaled, t2, one_minus_t2
# Calculate the magnitude of the interpolated vectors. (We will remove this magnitude.)
# 64-bit operations are used here to allow large exponents.
current_magnitude = torch.norm(image_interp, p=2, dim=1, keepdim=True).to(torch.float64).add_(0.00001)
# Interpolate the powered magnitudes, then un-power them (bring them back to a power of 1).
a_magnitude = torch.norm(a, p=2, dim=1, keepdim=True).to(torch.float64).pow_(
settings.inpaint_detail_preservation) * one_minus_t3
b_magnitude = torch.norm(b, p=2, dim=1, keepdim=True).to(torch.float64).pow_(
settings.inpaint_detail_preservation) * t3
desired_magnitude = a_magnitude
desired_magnitude.add_(b_magnitude).pow_(1 / settings.inpaint_detail_preservation)
del a_magnitude, b_magnitude, t3, one_minus_t3
# Change the linearly interpolated image vectors' magnitudes to the value we want.
# This is the last 64-bit operation.
image_interp_scaling_factor = desired_magnitude
image_interp_scaling_factor.div_(current_magnitude)
image_interp_scaling_factor = image_interp_scaling_factor.to(result_type)
image_interp_scaled = image_interp
image_interp_scaled.mul_(image_interp_scaling_factor)
del current_magnitude
del desired_magnitude
del image_interp
del image_interp_scaling_factor
del result_type
return image_interp_scaled
def get_modified_nmask(settings, nmask, sigma):
"""
Converts a negative mask representing the transparency of the original latent vectors being overlayed
to a mask that is scaled according to the denoising strength for this step.
Where:
0 = fully opaque, infinite density, fully masked
1 = fully transparent, zero density, fully unmasked
We bring this transparency to a power, as this allows one to simulate N number of blending operations
where N can be any positive real value. Using this one can control the balance of influence between
the denoiser and the original latents according to the sigma value.
NOTE: "mask" is not used
"""
import torch
return torch.pow(nmask, (sigma ** settings.mask_blend_power) * settings.mask_blend_scale)
def apply_adaptive_masks(
settings: SoftInpaintingSettings,
nmask,
latent_orig,
latent_processed,
overlay_images,
width, height,
paste_to):
import torch
import modules.processing as proc
import modules.images as images
from PIL import Image, ImageOps, ImageFilter
# TODO: Bias the blending according to the latent mask, add adjustable parameter for bias control.
latent_mask = nmask[0].float()
# convert the original mask into a form we use to scale distances for thresholding
mask_scalar = 1 - (torch.clamp(latent_mask, min=0, max=1) ** (settings.mask_blend_scale / 2))
mask_scalar = (0.5 * (1 - settings.composite_mask_influence)
+ mask_scalar * settings.composite_mask_influence)
mask_scalar = mask_scalar / (1.00001 - mask_scalar)
mask_scalar = mask_scalar.cpu().numpy()
latent_distance = torch.norm(latent_processed - latent_orig, p=2, dim=1)
kernel, kernel_center = get_gaussian_kernel(stddev_radius=1.5, max_radius=2)
masks_for_overlay = []
for i, (distance_map, overlay_image) in enumerate(zip(latent_distance, overlay_images)):
converted_mask = distance_map.float().cpu().numpy()
converted_mask = weighted_histogram_filter(converted_mask, kernel, kernel_center,
percentile_min=0.9, percentile_max=1, min_width=1)
converted_mask = weighted_histogram_filter(converted_mask, kernel, kernel_center,
percentile_min=0.25, percentile_max=0.75, min_width=1)
# The distance at which opacity of original decreases to 50%
half_weighted_distance = settings.composite_difference_threshold * mask_scalar
converted_mask = converted_mask / half_weighted_distance
converted_mask = 1 / (1 + converted_mask ** settings.composite_difference_contrast)
converted_mask = smootherstep(converted_mask)
converted_mask = 1 - converted_mask
converted_mask = 255. * converted_mask
converted_mask = converted_mask.astype(np.uint8)
converted_mask = Image.fromarray(converted_mask)
converted_mask = images.resize_image(2, converted_mask, width, height)
converted_mask = proc.create_binary_mask(converted_mask, round=False)
# Remove aliasing artifacts using a gaussian blur.
converted_mask = converted_mask.filter(ImageFilter.GaussianBlur(radius=4))
# Expand the mask to fit the whole image if needed.
if paste_to is not None:
converted_mask = proc.uncrop(converted_mask,
(overlay_image.width, overlay_image.height),
paste_to)
masks_for_overlay.append(converted_mask)
image_masked = Image.new('RGBa', (overlay_image.width, overlay_image.height))
image_masked.paste(overlay_image.convert("RGBA").convert("RGBa"),
mask=ImageOps.invert(converted_mask.convert('L')))
overlay_images[i] = image_masked.convert('RGBA')
return masks_for_overlay
def apply_masks(
settings,
nmask,
overlay_images,
width, height,
paste_to):
import torch
import modules.processing as proc
import modules.images as images
from PIL import Image, ImageOps, ImageFilter
converted_mask = nmask[0].float()
converted_mask = torch.clamp(converted_mask, min=0, max=1).pow_(settings.mask_blend_scale / 2)
converted_mask = 255. * converted_mask
converted_mask = converted_mask.cpu().numpy().astype(np.uint8)
converted_mask = Image.fromarray(converted_mask)
converted_mask = images.resize_image(2, converted_mask, width, height)
converted_mask = proc.create_binary_mask(converted_mask, round=False)
# Remove aliasing artifacts using a gaussian blur.
converted_mask = converted_mask.filter(ImageFilter.GaussianBlur(radius=4))
# Expand the mask to fit the whole image if needed.
if paste_to is not None:
converted_mask = proc.uncrop(converted_mask,
(width, height),
paste_to)
masks_for_overlay = []
for i, overlay_image in enumerate(overlay_images):
masks_for_overlay[i] = converted_mask
image_masked = Image.new('RGBa', (overlay_image.width, overlay_image.height))
image_masked.paste(overlay_image.convert("RGBA").convert("RGBa"),
mask=ImageOps.invert(converted_mask.convert('L')))
overlay_images[i] = image_masked.convert('RGBA')
return masks_for_overlay
def weighted_histogram_filter(img, kernel, kernel_center, percentile_min=0.0, percentile_max=1.0, min_width=1.0):
"""
Generalization convolution filter capable of applying
weighted mean, median, maximum, and minimum filters
parametrically using an arbitrary kernel.
Args:
img (nparray):
The image, a 2-D array of floats, to which the filter is being applied.
kernel (nparray):
The kernel, a 2-D array of floats.
kernel_center (nparray):
The kernel center coordinate, a 1-D array with two elements.
percentile_min (float):
The lower bound of the histogram window used by the filter,
from 0 to 1.
percentile_max (float):
The upper bound of the histogram window used by the filter,
from 0 to 1.
min_width (float):
The minimum size of the histogram window bounds, in weight units.
Must be greater than 0.
Returns:
(nparray): A filtered copy of the input image "img", a 2-D array of floats.
"""
# Converts an index tuple into a vector.
def vec(x):
return np.array(x)
kernel_min = -kernel_center
kernel_max = vec(kernel.shape) - kernel_center
def weighted_histogram_filter_single(idx):
idx = vec(idx)
min_index = np.maximum(0, idx + kernel_min)
max_index = np.minimum(vec(img.shape), idx + kernel_max)
window_shape = max_index - min_index
class WeightedElement:
"""
An element of the histogram, its weight
and bounds.
"""
def __init__(self, value, weight):
self.value: float = value
self.weight: float = weight
self.window_min: float = 0.0
self.window_max: float = 1.0
# Collect the values in the image as WeightedElements,
# weighted by their corresponding kernel values.
values = []
for window_tup in np.ndindex(tuple(window_shape)):
window_index = vec(window_tup)
image_index = window_index + min_index
centered_kernel_index = image_index - idx
kernel_index = centered_kernel_index + kernel_center
element = WeightedElement(img[tuple(image_index)], kernel[tuple(kernel_index)])
values.append(element)
def sort_key(x: WeightedElement):
return x.value
values.sort(key=sort_key)
# Calculate the height of the stack (sum)
# and each sample's range they occupy in the stack
sum = 0
for i in range(len(values)):
values[i].window_min = sum
sum += values[i].weight
values[i].window_max = sum
# Calculate what range of this stack ("window")
# we want to get the weighted average across.
window_min = sum * percentile_min
window_max = sum * percentile_max
window_width = window_max - window_min
# Ensure the window is within the stack and at least a certain size.
if window_width < min_width:
window_center = (window_min + window_max) / 2
window_min = window_center - min_width / 2
window_max = window_center + min_width / 2
if window_max > sum:
window_max = sum
window_min = sum - min_width
if window_min < 0:
window_min = 0
window_max = min_width
value = 0
value_weight = 0
# Get the weighted average of all the samples
# that overlap with the window, weighted
# by the size of their overlap.
for i in range(len(values)):
if window_min >= values[i].window_max:
continue
if window_max <= values[i].window_min:
break
s = max(window_min, values[i].window_min)
e = min(window_max, values[i].window_max)
w = e - s
value += values[i].value * w
value_weight += w
return value / value_weight if value_weight != 0 else 0
img_out = img.copy()
# Apply the kernel operation over each pixel.
for index in np.ndindex(img.shape):
img_out[index] = weighted_histogram_filter_single(index)
return img_out
def smoothstep(x):
"""
The smoothstep function, input should be clamped to 0-1 range.
Turns a diagonal line (f(x) = x) into a sigmoid-like curve.
"""
return x * x * (3 - 2 * x)
def smootherstep(x):
"""
The smootherstep function, input should be clamped to 0-1 range.
Turns a diagonal line (f(x) = x) into a sigmoid-like curve.
"""
return x * x * x * (x * (6 * x - 15) + 10)
def get_gaussian_kernel(stddev_radius=1.0, max_radius=2):
"""
Creates a Gaussian kernel with thresholded edges.
Args:
stddev_radius (float):
Standard deviation of the gaussian kernel, in pixels.
max_radius (int):
The size of the filter kernel. The number of pixels is (max_radius*2+1) ** 2.
The kernel is thresholded so that any values one pixel beyond this radius
is weighted at 0.
Returns:
(nparray, nparray): A kernel array (shape: (N, N)), its center coordinate (shape: (2))
"""
# Evaluates a 0-1 normalized gaussian function for a given square distance from the mean.
def gaussian(sqr_mag):
return math.exp(-sqr_mag / (stddev_radius * stddev_radius))
# Helper function for converting a tuple to an array.
def vec(x):
return np.array(x)
"""
Since a gaussian is unbounded, we need to limit ourselves
to a finite range.
We taper the ends off at the end of that range so they equal zero
while preserving the maximum value of 1 at the mean.
"""
zero_radius = max_radius + 1.0
gauss_zero = gaussian(zero_radius * zero_radius)
gauss_kernel_scale = 1 / (1 - gauss_zero)
def gaussian_kernel_func(coordinate):
x = coordinate[0] ** 2.0 + coordinate[1] ** 2.0
x = gaussian(x)
x -= gauss_zero
x *= gauss_kernel_scale
x = max(0.0, x)
return x
size = max_radius * 2 + 1
kernel_center = max_radius
kernel = np.zeros((size, size))
for index in np.ndindex(kernel.shape):
kernel[index] = gaussian_kernel_func(vec(index) - kernel_center)
return kernel, kernel_center
# ------------------- Constants -------------------
default = SoftInpaintingSettings(1, 0.5, 4, 0, 0.5, 2)
enabled_ui_label = "Soft inpainting"
enabled_gen_param_label = "Soft inpainting enabled"
enabled_el_id = "soft_inpainting_enabled"
ui_labels = SoftInpaintingSettings(
"Schedule bias",
"Preservation strength",
"Transition contrast boost",
"Mask influence",
"Difference threshold",
"Difference contrast")
ui_info = SoftInpaintingSettings(
"Shifts when preservation of original content occurs during denoising.",
"How strongly partially masked content should be preserved.",
"Amplifies the contrast that may be lost in partially masked regions.",
"How strongly the original mask should bias the difference threshold.",
"How much an image region can change before the original pixels are not blended in anymore.",
"How sharp the transition should be between blended and not blended.")
gen_param_labels = SoftInpaintingSettings(
"Soft inpainting schedule bias",
"Soft inpainting preservation strength",
"Soft inpainting transition contrast boost",
"Soft inpainting mask influence",
"Soft inpainting difference threshold",
"Soft inpainting difference contrast")
el_ids = SoftInpaintingSettings(
"mask_blend_power",
"mask_blend_scale",
"inpaint_detail_preservation",
"composite_mask_influence",
"composite_difference_threshold",
"composite_difference_contrast")
# ------------------- Script -------------------
class Script(scripts.Script):
def __init__(self):
self.section = "inpaint"
self.masks_for_overlay = None
self.overlay_images = None
def title(self):
return "Soft Inpainting"
def show(self, is_img2img):
return scripts.AlwaysVisible if is_img2img else False
def ui(self, is_img2img):
if not is_img2img:
return
with InputAccordion(False, label=enabled_ui_label, elem_id=enabled_el_id) as soft_inpainting_enabled:
with gr.Group():
gr.Markdown(
"""
Soft inpainting allows you to **seamlessly blend original content with inpainted content** according to the mask opacity.
**High _Mask blur_** values are recommended!
""")
power = \
gr.Slider(label=ui_labels.mask_blend_power,
info=ui_info.mask_blend_power,
minimum=0,
maximum=8,
step=0.1,
value=default.mask_blend_power,
elem_id=el_ids.mask_blend_power)
scale = \
gr.Slider(label=ui_labels.mask_blend_scale,
info=ui_info.mask_blend_scale,
minimum=0,
maximum=8,
step=0.05,
value=default.mask_blend_scale,
elem_id=el_ids.mask_blend_scale)
detail = \
gr.Slider(label=ui_labels.inpaint_detail_preservation,
info=ui_info.inpaint_detail_preservation,
minimum=1,
maximum=32,
step=0.5,
value=default.inpaint_detail_preservation,
elem_id=el_ids.inpaint_detail_preservation)
gr.Markdown(
"""
### Pixel Composite Settings
""")
mask_inf = \
gr.Slider(label=ui_labels.composite_mask_influence,
info=ui_info.composite_mask_influence,
minimum=0,
maximum=1,
step=0.05,
value=default.composite_mask_influence,
elem_id=el_ids.composite_mask_influence)
dif_thresh = \
gr.Slider(label=ui_labels.composite_difference_threshold,
info=ui_info.composite_difference_threshold,
minimum=0,
maximum=8,
step=0.25,
value=default.composite_difference_threshold,
elem_id=el_ids.composite_difference_threshold)
dif_contr = \
gr.Slider(label=ui_labels.composite_difference_contrast,
info=ui_info.composite_difference_contrast,
minimum=0,
maximum=8,
step=0.25,
value=default.composite_difference_contrast,
elem_id=el_ids.composite_difference_contrast)
with gr.Accordion("Help", open=False):
gr.Markdown(
f"""
### {ui_labels.mask_blend_power}
The blending strength of original content is scaled proportionally with the decreasing noise level values at each step (sigmas).
This ensures that the influence of the denoiser and original content preservation is roughly balanced at each step.
This balance can be shifted using this parameter, controlling whether earlier or later steps have stronger preservation.
- **Below 1**: Stronger preservation near the end (with low sigma)
- **1**: Balanced (proportional to sigma)
- **Above 1**: Stronger preservation in the beginning (with high sigma)
""")
gr.Markdown(
f"""
### {ui_labels.mask_blend_scale}
Skews whether partially masked image regions should be more likely to preserve the original content or favor inpainted content.
This may need to be adjusted depending on the {ui_labels.mask_blend_power}, CFG Scale, prompt and Denoising strength.
- **Low values**: Favors generated content.
- **High values**: Favors original content.
""")
gr.Markdown(
f"""
### {ui_labels.inpaint_detail_preservation}
This parameter controls how the original latent vectors and denoised latent vectors are interpolated.
With higher values, the magnitude of the resulting blended vector will be closer to the maximum of the two interpolated vectors.
This can prevent the loss of contrast that occurs with linear interpolation.
- **Low values**: Softer blending, details may fade.
- **High values**: Stronger contrast, may over-saturate colors.
""")
gr.Markdown(
"""
## Pixel Composite Settings
Masks are generated based on how much a part of the image changed after denoising.
These masks are used to blend the original and final images together.
If the difference is low, the original pixels are used instead of the pixels returned by the inpainting process.
""")
gr.Markdown(
f"""
### {ui_labels.composite_mask_influence}
This parameter controls how much the mask should bias this sensitivity to difference.
- **0**: Ignore the mask, only consider differences in image content.
- **1**: Follow the mask closely despite image content changes.
""")
gr.Markdown(
f"""
### {ui_labels.composite_difference_threshold}
This value represents the difference at which the original pixels will have less than 50% opacity.
- **Low values**: Two images patches must be almost the same in order to retain original pixels.
- **High values**: Two images patches can be very different and still retain original pixels.
""")
gr.Markdown(
f"""
### {ui_labels.composite_difference_contrast}
This value represents the contrast between the opacity of the original and inpainted content.
- **Low values**: The blend will be more gradual and have longer transitions, but may cause ghosting.
- **High values**: Ghosting will be less common, but transitions may be very sudden.
""")
self.infotext_fields = [(soft_inpainting_enabled, enabled_gen_param_label),
(power, gen_param_labels.mask_blend_power),
(scale, gen_param_labels.mask_blend_scale),
(detail, gen_param_labels.inpaint_detail_preservation),
(mask_inf, gen_param_labels.composite_mask_influence),
(dif_thresh, gen_param_labels.composite_difference_threshold),
(dif_contr, gen_param_labels.composite_difference_contrast)]
self.paste_field_names = []
for _, field_name in self.infotext_fields:
self.paste_field_names.append(field_name)
return [soft_inpainting_enabled,
power,
scale,
detail,
mask_inf,
dif_thresh,
dif_contr]
def process(self, p, enabled, power, scale, detail_preservation, mask_inf, dif_thresh, dif_contr):
if not enabled:
return
if not processing_uses_inpainting(p):
return
# Shut off the rounding it normally does.
p.mask_round = False
settings = SoftInpaintingSettings(power, scale, detail_preservation, mask_inf, dif_thresh, dif_contr)
# p.extra_generation_params["Mask rounding"] = False
settings.add_generation_params(p.extra_generation_params)
def on_mask_blend(self, p, mba: scripts.MaskBlendArgs, enabled, power, scale, detail_preservation, mask_inf,
dif_thresh, dif_contr):
if not enabled:
return
if not processing_uses_inpainting(p):
return
if mba.is_final_blend:
mba.blended_latent = mba.current_latent
return
settings = SoftInpaintingSettings(power, scale, detail_preservation, mask_inf, dif_thresh, dif_contr)
# todo: Why is sigma 2D? Both values are the same.
mba.blended_latent = latent_blend(settings,
mba.init_latent,
mba.current_latent,
get_modified_nmask(settings, mba.nmask, mba.sigma[0]))
def post_sample(self, p, ps: scripts.PostSampleArgs, enabled, power, scale, detail_preservation, mask_inf,
dif_thresh, dif_contr):
if not enabled:
return
if not processing_uses_inpainting(p):
return
nmask = getattr(p, "nmask", None)
if nmask is None:
return
from modules import images
from modules.shared import opts
settings = SoftInpaintingSettings(power, scale, detail_preservation, mask_inf, dif_thresh, dif_contr)
# since the original code puts holes in the existing overlay images,
# we have to rebuild them.
self.overlay_images = []
for img in p.init_images:
image = images.flatten(img, opts.img2img_background_color)
if p.paste_to is None and p.resize_mode != 3:
image = images.resize_image(p.resize_mode, image, p.width, p.height)
self.overlay_images.append(image.convert('RGBA'))
if len(p.init_images) == 1:
self.overlay_images = self.overlay_images * p.batch_size
if getattr(ps.samples, 'already_decoded', False):
self.masks_for_overlay = apply_masks(settings=settings,
nmask=nmask,
overlay_images=self.overlay_images,
width=p.width,
height=p.height,
paste_to=p.paste_to)
else:
self.masks_for_overlay = apply_adaptive_masks(settings=settings,
nmask=nmask,
latent_orig=p.init_latent,
latent_processed=ps.samples,
overlay_images=self.overlay_images,
width=p.width,
height=p.height,
paste_to=p.paste_to)
def postprocess_maskoverlay(self, p, ppmo: scripts.PostProcessMaskOverlayArgs, enabled, power, scale,
detail_preservation, mask_inf, dif_thresh, dif_contr):
if not enabled:
return
if not processing_uses_inpainting(p):
return
if self.masks_for_overlay is None:
return
if self.overlay_images is None:
return
ppmo.mask_for_overlay = self.masks_for_overlay[ppmo.index]
ppmo.overlay_image = self.overlay_images[ppmo.index]

View File

@ -133,7 +133,7 @@ case "$gpu_info" in
if [[ $(bc <<< "$pyv <= 3.10") -eq 1 ]] if [[ $(bc <<< "$pyv <= 3.10") -eq 1 ]]
then then
# Navi users will still use torch 1.13 because 2.0 does not seem to work. # Navi users will still use torch 1.13 because 2.0 does not seem to work.
export TORCH_COMMAND="pip install torch==1.13.1+rocm5.2 torchvision==0.14.1+rocm5.2 --index-url https://download.pytorch.org/whl/rocm5.2" export TORCH_COMMAND="pip install --pre torch torchvision --index-url https://download.pytorch.org/whl/nightly/rocm5.6"
else else
printf "\e[1m\e[31mERROR: RX 5000 series GPUs must be using at max python 3.10, aborting...\e[0m" printf "\e[1m\e[31mERROR: RX 5000 series GPUs must be using at max python 3.10, aborting...\e[0m"
exit 1 exit 1
@ -143,8 +143,7 @@ case "$gpu_info" in
*"Navi 2"*) export HSA_OVERRIDE_GFX_VERSION=10.3.0 *"Navi 2"*) export HSA_OVERRIDE_GFX_VERSION=10.3.0
;; ;;
*"Navi 3"*) [[ -z "${TORCH_COMMAND}" ]] && \ *"Navi 3"*) [[ -z "${TORCH_COMMAND}" ]] && \
export TORCH_COMMAND="pip install torch torchvision --index-url https://download.pytorch.org/whl/test/rocm5.6" export TORCH_COMMAND="pip install --pre torch torchvision --index-url https://download.pytorch.org/whl/nightly/rocm5.7"
# Navi 3 needs at least 5.5 which is only on the torch 2.1.0 release candidates right now
;; ;;
*"Renoir"*) export HSA_OVERRIDE_GFX_VERSION=9.0.0 *"Renoir"*) export HSA_OVERRIDE_GFX_VERSION=9.0.0
printf "\n%s\n" "${delimiter}" printf "\n%s\n" "${delimiter}"