diff --git a/modules/sd_samplers_common.py b/modules/sd_samplers_common.py index d99c933da..763829f1c 100644 --- a/modules/sd_samplers_common.py +++ b/modules/sd_samplers_common.py @@ -26,22 +26,19 @@ approximation_indexes = {"Full": 0, "Approx NN": 1, "Approx cheap": 2, "TAESD": def single_sample_to_image(sample, approximation=None): - if approximation is None: approximation = approximation_indexes.get(opts.show_progress_type, 0) if approximation == 2: - x_sample = sd_vae_approx.cheap_approximation(sample) + x_sample = sd_vae_approx.cheap_approximation(sample) * 0.5 + 0.5 elif approximation == 1: - x_sample = sd_vae_approx.model()(sample.to(devices.device, devices.dtype).unsqueeze(0))[0].detach() + x_sample = sd_vae_approx.model()(sample.to(devices.device, devices.dtype).unsqueeze(0))[0].detach() * 0.5 + 0.5 elif approximation == 3: x_sample = sample * 1.5 x_sample = sd_vae_taesd.model()(x_sample.to(devices.device, devices.dtype).unsqueeze(0))[0].detach() else: - x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0] + x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0] * 0.5 + 0.5 - if approximation != 3: - x_sample = (x_sample + 1.0) / 2.0 x_sample = torch.clamp(x_sample, min=0.0, max=1.0) x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) x_sample = x_sample.astype(np.uint8)