rework Negative Guidance minimum sigma to work with AND, add infotext and copypaste parameters support

This commit is contained in:
AUTOMATIC 2023-04-29 15:57:09 +03:00
parent 3591eefedf
commit 1d11e89698
4 changed files with 30 additions and 20 deletions

View File

@ -111,7 +111,8 @@ titles = {
"Resize height to": "Resizes image to this height. If 0, height is inferred from either of two nearby sliders.", "Resize height to": "Resizes image to this height. If 0, height is inferred from either of two nearby sliders.",
"Multiplier for extra networks": "When adding extra network such as Hypernetwork or Lora to prompt, use this multiplier for it.", "Multiplier for extra networks": "When adding extra network such as Hypernetwork or Lora to prompt, use this multiplier for it.",
"Discard weights with matching name": "Regular expression; if weights's name matches it, the weights is not written to the resulting checkpoint. Use ^model_ema to discard EMA weights.", "Discard weights with matching name": "Regular expression; if weights's name matches it, the weights is not written to the resulting checkpoint. Use ^model_ema to discard EMA weights.",
"Extra networks tab order": "Comma-separated list of tab names; tabs listed here will appear in the extra networks UI first and in order lsited." "Extra networks tab order": "Comma-separated list of tab names; tabs listed here will appear in the extra networks UI first and in order lsited.",
"Negative Guidance minimum sigma": "Skip negative prompt for steps where image is already mostly denoised; the higher this value, the more skips there will be; provides increased performance in exchange for minor quality reduction."
} }

View File

@ -309,6 +309,7 @@ infotext_to_setting_name_mapping = [
('UniPC order', 'uni_pc_order'), ('UniPC order', 'uni_pc_order'),
('UniPC lower order final', 'uni_pc_lower_order_final'), ('UniPC lower order final', 'uni_pc_lower_order_final'),
('RNG', 'randn_source'), ('RNG', 'randn_source'),
('NGMS', 's_min_uncond'),
] ]

View File

@ -480,7 +480,8 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
"Clip skip": None if clip_skip <= 1 else clip_skip, "Clip skip": None if clip_skip <= 1 else clip_skip,
"ENSD": None if opts.eta_noise_seed_delta == 0 else opts.eta_noise_seed_delta, "ENSD": None if opts.eta_noise_seed_delta == 0 else opts.eta_noise_seed_delta,
"Init image hash": getattr(p, 'init_img_hash', None), "Init image hash": getattr(p, 'init_img_hash', None),
"RNG": (opts.randn_source if opts.randn_source != "GPU" else None) "RNG": opts.randn_source if opts.randn_source != "GPU" else None,
"NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond,
} }
generation_params.update(p.extra_generation_params) generation_params.update(p.extra_generation_params)

View File

@ -115,20 +115,21 @@ class CFGDenoiser(torch.nn.Module):
sigma_in = denoiser_params.sigma sigma_in = denoiser_params.sigma
tensor = denoiser_params.text_cond tensor = denoiser_params.text_cond
uncond = denoiser_params.text_uncond uncond = denoiser_params.text_uncond
skip_uncond = False
if self.step % 2 and s_min_uncond > 0 and not is_edit_model:
# alternating uncond allows for higher thresholds without the quality loss normally expected from raising it # alternating uncond allows for higher thresholds without the quality loss normally expected from raising it
sigma_threshold = s_min_uncond if self.step % 2 and s_min_uncond > 0 and sigma[0] < s_min_uncond and not is_edit_model:
if(torch.dot(sigma,sigma) < sigma.shape[0] * (sigma_threshold*sigma_threshold) ): skip_uncond = True
uncond = torch.zeros([0,0,uncond.shape[2]]) x_in = x_in[:-batch_size]
x_in=x_in[:x_in.shape[0]//2] sigma_in = sigma_in[:-batch_size]
sigma_in=sigma_in[:sigma_in.shape[0]//2]
if tensor.shape[1] == uncond.shape[1]: if tensor.shape[1] == uncond.shape[1] or skip_uncond:
if not is_edit_model: if is_edit_model:
cond_in = torch.cat([tensor, uncond])
else:
cond_in = torch.cat([tensor, uncond, uncond]) cond_in = torch.cat([tensor, uncond, uncond])
elif skip_uncond:
cond_in = tensor
else:
cond_in = torch.cat([tensor, uncond])
if shared.batch_cond_uncond: if shared.batch_cond_uncond:
x_out = self.inner_model(x_in, sigma_in, cond=make_condition_dict([cond_in], image_cond_in)) x_out = self.inner_model(x_in, sigma_in, cond=make_condition_dict([cond_in], image_cond_in))
@ -152,9 +153,15 @@ class CFGDenoiser(torch.nn.Module):
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b])) x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b]))
if uncond.shape[0]: if not skip_uncond:
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict([uncond], image_cond_in[-uncond.shape[0]:])) x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict([uncond], image_cond_in[-uncond.shape[0]:]))
if skip_uncond:
#x_out = torch.cat([x_out, x_out[0:batch_size]]) # we skipped uncond denoising, so we put cond-denoised image to where the uncond-denoised image should be
denoised_image_indexes = [x[0][0] for x in conds_list]
fake_uncond = torch.cat([x_out[i:i+1] for i in denoised_image_indexes])
x_out = torch.cat([x_out, fake_uncond])
denoised_params = CFGDenoisedParams(x_out, state.sampling_step, state.sampling_steps) denoised_params = CFGDenoisedParams(x_out, state.sampling_step, state.sampling_steps)
cfg_denoised_callback(denoised_params) cfg_denoised_callback(denoised_params)
@ -165,13 +172,12 @@ class CFGDenoiser(torch.nn.Module):
elif opts.live_preview_content == "Negative prompt": elif opts.live_preview_content == "Negative prompt":
sd_samplers_common.store_latent(x_out[-uncond.shape[0]:]) sd_samplers_common.store_latent(x_out[-uncond.shape[0]:])
if not is_edit_model: if is_edit_model:
if uncond.shape[0]:
denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
else:
denoised = x_out
else:
denoised = self.combine_denoised_for_edit_model(x_out, cond_scale) denoised = self.combine_denoised_for_edit_model(x_out, cond_scale)
elif skip_uncond:
denoised = self.combine_denoised(x_out, conds_list, uncond, 1.0)
else:
denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
if self.mask is not None: if self.mask is not None:
denoised = self.init_latent * self.mask + self.nmask * denoised denoised = self.init_latent * self.mask + self.nmask * denoised
@ -221,6 +227,7 @@ class KDiffusionSampler:
self.eta = None self.eta = None
self.config = None self.config = None
self.last_latent = None self.last_latent = None
self.s_min_uncond = None
self.conditioning_key = sd_model.model.conditioning_key self.conditioning_key = sd_model.model.conditioning_key