mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-21 13:50:12 +08:00
rework Negative Guidance minimum sigma to work with AND, add infotext and copypaste parameters support
This commit is contained in:
parent
3591eefedf
commit
1d11e89698
@ -111,7 +111,8 @@ titles = {
|
|||||||
"Resize height to": "Resizes image to this height. If 0, height is inferred from either of two nearby sliders.",
|
"Resize height to": "Resizes image to this height. If 0, height is inferred from either of two nearby sliders.",
|
||||||
"Multiplier for extra networks": "When adding extra network such as Hypernetwork or Lora to prompt, use this multiplier for it.",
|
"Multiplier for extra networks": "When adding extra network such as Hypernetwork or Lora to prompt, use this multiplier for it.",
|
||||||
"Discard weights with matching name": "Regular expression; if weights's name matches it, the weights is not written to the resulting checkpoint. Use ^model_ema to discard EMA weights.",
|
"Discard weights with matching name": "Regular expression; if weights's name matches it, the weights is not written to the resulting checkpoint. Use ^model_ema to discard EMA weights.",
|
||||||
"Extra networks tab order": "Comma-separated list of tab names; tabs listed here will appear in the extra networks UI first and in order lsited."
|
"Extra networks tab order": "Comma-separated list of tab names; tabs listed here will appear in the extra networks UI first and in order lsited.",
|
||||||
|
"Negative Guidance minimum sigma": "Skip negative prompt for steps where image is already mostly denoised; the higher this value, the more skips there will be; provides increased performance in exchange for minor quality reduction."
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@ -309,6 +309,7 @@ infotext_to_setting_name_mapping = [
|
|||||||
('UniPC order', 'uni_pc_order'),
|
('UniPC order', 'uni_pc_order'),
|
||||||
('UniPC lower order final', 'uni_pc_lower_order_final'),
|
('UniPC lower order final', 'uni_pc_lower_order_final'),
|
||||||
('RNG', 'randn_source'),
|
('RNG', 'randn_source'),
|
||||||
|
('NGMS', 's_min_uncond'),
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
|
@ -480,7 +480,8 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
|
|||||||
"Clip skip": None if clip_skip <= 1 else clip_skip,
|
"Clip skip": None if clip_skip <= 1 else clip_skip,
|
||||||
"ENSD": None if opts.eta_noise_seed_delta == 0 else opts.eta_noise_seed_delta,
|
"ENSD": None if opts.eta_noise_seed_delta == 0 else opts.eta_noise_seed_delta,
|
||||||
"Init image hash": getattr(p, 'init_img_hash', None),
|
"Init image hash": getattr(p, 'init_img_hash', None),
|
||||||
"RNG": (opts.randn_source if opts.randn_source != "GPU" else None)
|
"RNG": opts.randn_source if opts.randn_source != "GPU" else None,
|
||||||
|
"NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond,
|
||||||
}
|
}
|
||||||
|
|
||||||
generation_params.update(p.extra_generation_params)
|
generation_params.update(p.extra_generation_params)
|
||||||
|
@ -115,20 +115,21 @@ class CFGDenoiser(torch.nn.Module):
|
|||||||
sigma_in = denoiser_params.sigma
|
sigma_in = denoiser_params.sigma
|
||||||
tensor = denoiser_params.text_cond
|
tensor = denoiser_params.text_cond
|
||||||
uncond = denoiser_params.text_uncond
|
uncond = denoiser_params.text_uncond
|
||||||
|
skip_uncond = False
|
||||||
|
|
||||||
if self.step % 2 and s_min_uncond > 0 and not is_edit_model:
|
# alternating uncond allows for higher thresholds without the quality loss normally expected from raising it
|
||||||
# alternating uncond allows for higher thresholds without the quality loss normally expected from raising it
|
if self.step % 2 and s_min_uncond > 0 and sigma[0] < s_min_uncond and not is_edit_model:
|
||||||
sigma_threshold = s_min_uncond
|
skip_uncond = True
|
||||||
if(torch.dot(sigma,sigma) < sigma.shape[0] * (sigma_threshold*sigma_threshold) ):
|
x_in = x_in[:-batch_size]
|
||||||
uncond = torch.zeros([0,0,uncond.shape[2]])
|
sigma_in = sigma_in[:-batch_size]
|
||||||
x_in=x_in[:x_in.shape[0]//2]
|
|
||||||
sigma_in=sigma_in[:sigma_in.shape[0]//2]
|
|
||||||
|
|
||||||
if tensor.shape[1] == uncond.shape[1]:
|
if tensor.shape[1] == uncond.shape[1] or skip_uncond:
|
||||||
if not is_edit_model:
|
if is_edit_model:
|
||||||
cond_in = torch.cat([tensor, uncond])
|
|
||||||
else:
|
|
||||||
cond_in = torch.cat([tensor, uncond, uncond])
|
cond_in = torch.cat([tensor, uncond, uncond])
|
||||||
|
elif skip_uncond:
|
||||||
|
cond_in = tensor
|
||||||
|
else:
|
||||||
|
cond_in = torch.cat([tensor, uncond])
|
||||||
|
|
||||||
if shared.batch_cond_uncond:
|
if shared.batch_cond_uncond:
|
||||||
x_out = self.inner_model(x_in, sigma_in, cond=make_condition_dict([cond_in], image_cond_in))
|
x_out = self.inner_model(x_in, sigma_in, cond=make_condition_dict([cond_in], image_cond_in))
|
||||||
@ -152,9 +153,15 @@ class CFGDenoiser(torch.nn.Module):
|
|||||||
|
|
||||||
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b]))
|
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b]))
|
||||||
|
|
||||||
if uncond.shape[0]:
|
if not skip_uncond:
|
||||||
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict([uncond], image_cond_in[-uncond.shape[0]:]))
|
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict([uncond], image_cond_in[-uncond.shape[0]:]))
|
||||||
|
|
||||||
|
if skip_uncond:
|
||||||
|
#x_out = torch.cat([x_out, x_out[0:batch_size]]) # we skipped uncond denoising, so we put cond-denoised image to where the uncond-denoised image should be
|
||||||
|
denoised_image_indexes = [x[0][0] for x in conds_list]
|
||||||
|
fake_uncond = torch.cat([x_out[i:i+1] for i in denoised_image_indexes])
|
||||||
|
x_out = torch.cat([x_out, fake_uncond])
|
||||||
|
|
||||||
denoised_params = CFGDenoisedParams(x_out, state.sampling_step, state.sampling_steps)
|
denoised_params = CFGDenoisedParams(x_out, state.sampling_step, state.sampling_steps)
|
||||||
cfg_denoised_callback(denoised_params)
|
cfg_denoised_callback(denoised_params)
|
||||||
|
|
||||||
@ -165,13 +172,12 @@ class CFGDenoiser(torch.nn.Module):
|
|||||||
elif opts.live_preview_content == "Negative prompt":
|
elif opts.live_preview_content == "Negative prompt":
|
||||||
sd_samplers_common.store_latent(x_out[-uncond.shape[0]:])
|
sd_samplers_common.store_latent(x_out[-uncond.shape[0]:])
|
||||||
|
|
||||||
if not is_edit_model:
|
if is_edit_model:
|
||||||
if uncond.shape[0]:
|
|
||||||
denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
|
|
||||||
else:
|
|
||||||
denoised = x_out
|
|
||||||
else:
|
|
||||||
denoised = self.combine_denoised_for_edit_model(x_out, cond_scale)
|
denoised = self.combine_denoised_for_edit_model(x_out, cond_scale)
|
||||||
|
elif skip_uncond:
|
||||||
|
denoised = self.combine_denoised(x_out, conds_list, uncond, 1.0)
|
||||||
|
else:
|
||||||
|
denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
|
||||||
|
|
||||||
if self.mask is not None:
|
if self.mask is not None:
|
||||||
denoised = self.init_latent * self.mask + self.nmask * denoised
|
denoised = self.init_latent * self.mask + self.nmask * denoised
|
||||||
@ -221,6 +227,7 @@ class KDiffusionSampler:
|
|||||||
self.eta = None
|
self.eta = None
|
||||||
self.config = None
|
self.config = None
|
||||||
self.last_latent = None
|
self.last_latent = None
|
||||||
|
self.s_min_uncond = None
|
||||||
|
|
||||||
self.conditioning_key = sd_model.model.conditioning_key
|
self.conditioning_key = sd_model.model.conditioning_key
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user