diff --git a/modules/extras.py b/modules/extras.py index 5e2702508..7e2223132 100644 --- a/modules/extras.py +++ b/modules/extras.py @@ -242,6 +242,9 @@ def run_pnginfo(image): def run_modelmerger(primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format): + shared.state.begin() + shared.state.job = 'model-merge' + def weighted_sum(theta0, theta1, alpha): return ((1 - alpha) * theta0) + (alpha * theta1) @@ -263,8 +266,11 @@ def run_modelmerger(primary_model_name, secondary_model_name, tertiary_model_nam theta_func1, theta_func2 = theta_funcs[interp_method] if theta_func1 and not tertiary_model_info: + shared.state.textinfo = "Failed: Interpolation method requires a tertiary model." + shared.state.end() return ["Failed: Interpolation method requires a tertiary model."] + [gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)] + shared.state.textinfo = f"Loading {secondary_model_info.filename}..." print(f"Loading {secondary_model_info.filename}...") theta_1 = sd_models.read_state_dict(secondary_model_info.filename, map_location='cpu') @@ -281,6 +287,7 @@ def run_modelmerger(primary_model_name, secondary_model_name, tertiary_model_nam theta_1[key] = torch.zeros_like(theta_1[key]) del theta_2 + shared.state.textinfo = f"Loading {primary_model_info.filename}..." print(f"Loading {primary_model_info.filename}...") theta_0 = sd_models.read_state_dict(primary_model_info.filename, map_location='cpu') @@ -291,6 +298,7 @@ def run_modelmerger(primary_model_name, secondary_model_name, tertiary_model_nam a = theta_0[key] b = theta_1[key] + shared.state.textinfo = f'Merging layer {key}' # this enables merging an inpainting model (A) with another one (B); # where normal model would have 4 channels, for latenst space, inpainting model would # have another 4 channels for unmasked picture's latent space, plus one channel for mask, for a total of 9 @@ -303,8 +311,6 @@ def run_modelmerger(primary_model_name, secondary_model_name, tertiary_model_nam theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier) result_is_inpainting_model = True else: - assert a.shape == b.shape, f'Incompatible shapes for layer {key}: A is {a.shape}, and B is {b.shape}' - theta_0[key] = theta_func2(a, b, multiplier) if save_as_half: @@ -332,6 +338,7 @@ def run_modelmerger(primary_model_name, secondary_model_name, tertiary_model_nam output_modelname = os.path.join(ckpt_dir, filename) + shared.state.textinfo = f"Saving to {output_modelname}..." print(f"Saving to {output_modelname}...") _, extension = os.path.splitext(output_modelname) @@ -343,4 +350,7 @@ def run_modelmerger(primary_model_name, secondary_model_name, tertiary_model_nam sd_models.list_models() print("Checkpoint saved.") + shared.state.textinfo = "Checkpoint saved to " + output_modelname + shared.state.end() + return ["Checkpoint saved to " + output_modelname] + [gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)]