diff --git a/.gitignore b/.gitignore
index f9c3357cf..8fa05852a 100644
--- a/.gitignore
+++ b/.gitignore
@@ -27,4 +27,5 @@ __pycache__
notification.mp3
/SwinIR
/textual_inversion
-.vscode
\ No newline at end of file
+.vscode
+/extensions
diff --git a/README.md b/README.md
index 5b5dc8bac..1a0e4f6a2 100644
--- a/README.md
+++ b/README.md
@@ -83,8 +83,17 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- Estimated completion time in progress bar
- API
- Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML.
-- Aesthetic Gradients, a way to generate images with a specific aesthetic by using clip images embds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients))
+- via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients))
+## Where are Aesthetic Gradients?!?!
+Aesthetic Gradients are now an extension. You can install it using git:
+
+```commandline
+git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients extensions/aesthetic-gradients
+```
+
+After running this command, make sure that you have `aesthetic-gradients` dir in webui's `extensions` directory and restart
+the UI. The interface for Aesthetic Gradients should appear exactly the same as it was.
## Installation and Running
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
diff --git a/extensions/put extension here.txt b/extensions/put extension here.txt
new file mode 100644
index 000000000..e69de29bb
diff --git a/javascript/images_history.js b/javascript/images_history.js
index f7d052c3d..c9aa76f83 100644
--- a/javascript/images_history.js
+++ b/javascript/images_history.js
@@ -17,14 +17,6 @@ var images_history_click_image = function(){
images_history_set_image_info(this);
}
-var images_history_click_tab = function(){
- var tabs_box = gradioApp().getElementById("images_history_tab");
- if (!tabs_box.classList.contains(this.getAttribute("tabname"))) {
- gradioApp().getElementById(this.getAttribute("tabname") + "_images_history_renew_page").click();
- tabs_box.classList.add(this.getAttribute("tabname"))
- }
-}
-
function images_history_disabled_del(){
gradioApp().querySelectorAll(".images_history_del_button").forEach(function(btn){
btn.setAttribute('disabled','disabled');
@@ -43,7 +35,6 @@ function images_history_get_parent_by_tagname(item, tagname){
var parent = item.parentElement;
tagname = tagname.toUpperCase()
while(parent.tagName != tagname){
- console.log(parent.tagName, tagname)
parent = parent.parentElement;
}
return parent;
@@ -88,15 +79,15 @@ function images_history_set_image_info(button){
}
-function images_history_get_current_img(tabname, image_path, files){
+function images_history_get_current_img(tabname, img_index, files){
return [
- gradioApp().getElementById(tabname + '_images_history_set_index').getAttribute("img_index"),
- image_path,
+ tabname,
+ gradioApp().getElementById(tabname + '_images_history_set_index').getAttribute("img_index"),
files
];
}
-function images_history_delete(del_num, tabname, img_path, img_file_name, page_index, filenames, image_index){
+function images_history_delete(del_num, tabname, image_index){
image_index = parseInt(image_index);
var tab = gradioApp().getElementById(tabname + '_images_history');
var set_btn = tab.querySelector(".images_history_set_index");
@@ -107,6 +98,7 @@ function images_history_delete(del_num, tabname, img_path, img_file_name, page_i
}
});
var img_num = buttons.length / 2;
+ del_num = Math.min(img_num - image_index, del_num)
if (img_num <= del_num){
setTimeout(function(tabname){
gradioApp().getElementById(tabname + '_images_history_renew_page').click();
@@ -114,30 +106,28 @@ function images_history_delete(del_num, tabname, img_path, img_file_name, page_i
} else {
var next_img
for (var i = 0; i < del_num; i++){
- if (image_index + i < image_index + img_num){
- buttons[image_index + i].style.display = 'none';
- buttons[image_index + img_num + 1].style.display = 'none';
- next_img = image_index + i + 1
- }
+ buttons[image_index + i].style.display = 'none';
+ buttons[image_index + i + img_num].style.display = 'none';
+ next_img = image_index + i + 1
}
var bnt;
if (next_img >= img_num){
- btn = buttons[image_index - del_num];
+ btn = buttons[image_index - 1];
} else {
btn = buttons[next_img];
}
setTimeout(function(btn){btn.click()}, 30, btn);
}
images_history_disabled_del();
- return [del_num, tabname, img_path, img_file_name, page_index, filenames, image_index];
+
}
-function images_history_turnpage(img_path, page_index, image_index, tabname){
+function images_history_turnpage(tabname){
+ gradioApp().getElementById(tabname + '_images_history_del_button').setAttribute('disabled','disabled');
var buttons = gradioApp().getElementById(tabname + '_images_history').querySelectorAll(".gallery-item");
buttons.forEach(function(elem) {
elem.style.display = 'block';
- })
- return [img_path, page_index, image_index, tabname];
+ })
}
function images_history_enable_del_buttons(){
@@ -147,60 +137,64 @@ function images_history_enable_del_buttons(){
}
function images_history_init(){
- var load_txt2img_button = gradioApp().getElementById('txt2img_images_history_renew_page')
- if (load_txt2img_button){
+ var tabnames = gradioApp().getElementById("images_history_tabnames_list")
+ if (tabnames){
+ images_history_tab_list = tabnames.querySelector("textarea").value.split(",")
for (var i in images_history_tab_list ){
- tab = images_history_tab_list[i];
+ var tab = images_history_tab_list[i];
gradioApp().getElementById(tab + '_images_history').classList.add("images_history_cantainor");
gradioApp().getElementById(tab + '_images_history_set_index').classList.add("images_history_set_index");
gradioApp().getElementById(tab + '_images_history_del_button').classList.add("images_history_del_button");
- gradioApp().getElementById(tab + '_images_history_gallery').classList.add("images_history_gallery");
-
+ gradioApp().getElementById(tab + '_images_history_gallery').classList.add("images_history_gallery");
+ gradioApp().getElementById(tab + "_images_history_start").setAttribute("style","padding:20px;font-size:25px");
}
- var tabs_box = gradioApp().getElementById("tab_images_history").querySelector("div").querySelector("div").querySelector("div");
- tabs_box.setAttribute("id", "images_history_tab");
- var tab_btns = tabs_box.querySelectorAll("button");
- for (var i in images_history_tab_list){
- var tabname = images_history_tab_list[i]
- tab_btns[i].setAttribute("tabname", tabname);
- // this refreshes history upon tab switch
- // until the history is known to work well, which is not the case now, we do not do this at startup
- //tab_btns[i].addEventListener('click', images_history_click_tab);
- }
- tabs_box.classList.add(images_history_tab_list[0]);
-
- // same as above, at page load
- //load_txt2img_button.click();
+ //preload
+ if (gradioApp().getElementById("images_history_preload").querySelector("input").checked ){
+ var tabs_box = gradioApp().getElementById("tab_images_history").querySelector("div").querySelector("div").querySelector("div");
+ tabs_box.setAttribute("id", "images_history_tab");
+ var tab_btns = tabs_box.querySelectorAll("button");
+ for (var i in images_history_tab_list){
+ var tabname = images_history_tab_list[i]
+ tab_btns[i].setAttribute("tabname", tabname);
+ tab_btns[i].addEventListener('click', function(){
+ var tabs_box = gradioApp().getElementById("images_history_tab");
+ if (!tabs_box.classList.contains(this.getAttribute("tabname"))) {
+ gradioApp().getElementById(this.getAttribute("tabname") + "_images_history_start").click();
+ tabs_box.classList.add(this.getAttribute("tabname"))
+ }
+ });
+ }
+ tab_btns[0].click()
+ }
} else {
setTimeout(images_history_init, 500);
}
}
-var images_history_tab_list = ["txt2img", "img2img", "extras"];
+var images_history_tab_list = "";
setTimeout(images_history_init, 500);
document.addEventListener("DOMContentLoaded", function() {
var mutationObserver = new MutationObserver(function(m){
- for (var i in images_history_tab_list ){
- let tabname = images_history_tab_list[i]
- var buttons = gradioApp().querySelectorAll('#' + tabname + '_images_history .gallery-item');
- buttons.forEach(function(bnt){
- bnt.addEventListener('click', images_history_click_image, true);
- });
+ if (images_history_tab_list != ""){
+ for (var i in images_history_tab_list ){
+ let tabname = images_history_tab_list[i]
+ var buttons = gradioApp().querySelectorAll('#' + tabname + '_images_history .gallery-item');
+ buttons.forEach(function(bnt){
+ bnt.addEventListener('click', images_history_click_image, true);
+ });
- // same as load_txt2img_button.click() above
- /*
- var cls_btn = gradioApp().getElementById(tabname + '_images_history_gallery').querySelector("svg");
- if (cls_btn){
- cls_btn.addEventListener('click', function(){
- gradioApp().getElementById(tabname + '_images_history_renew_page').click();
- }, false);
- }*/
+ var cls_btn = gradioApp().getElementById(tabname + '_images_history_gallery').querySelector("svg");
+ if (cls_btn){
+ cls_btn.addEventListener('click', function(){
+ gradioApp().getElementById(tabname + '_images_history_renew_page').click();
+ }, false);
+ }
- }
+ }
+ }
});
- mutationObserver.observe( gradioApp(), { childList:true, subtree:true });
-
+ mutationObserver.observe(gradioApp(), { childList:true, subtree:true });
});
diff --git a/modules/aesthetic_clip.py b/modules/aesthetic_clip.py
deleted file mode 100644
index 8c828541f..000000000
--- a/modules/aesthetic_clip.py
+++ /dev/null
@@ -1,241 +0,0 @@
-import copy
-import itertools
-import os
-from pathlib import Path
-import html
-import gc
-
-import gradio as gr
-import torch
-from PIL import Image
-from torch import optim
-
-from modules import shared
-from transformers import CLIPModel, CLIPProcessor, CLIPTokenizer
-from tqdm.auto import tqdm, trange
-from modules.shared import opts, device
-
-
-def get_all_images_in_folder(folder):
- return [os.path.join(folder, f) for f in os.listdir(folder) if
- os.path.isfile(os.path.join(folder, f)) and check_is_valid_image_file(f)]
-
-
-def check_is_valid_image_file(filename):
- return filename.lower().endswith(('.png', '.jpg', '.jpeg', ".gif", ".tiff", ".webp"))
-
-
-def batched(dataset, total, n=1):
- for ndx in range(0, total, n):
- yield [dataset.__getitem__(i) for i in range(ndx, min(ndx + n, total))]
-
-
-def iter_to_batched(iterable, n=1):
- it = iter(iterable)
- while True:
- chunk = tuple(itertools.islice(it, n))
- if not chunk:
- return
- yield chunk
-
-
-def create_ui():
- import modules.ui
-
- with gr.Group():
- with gr.Accordion("Open for Clip Aesthetic!", open=False):
- with gr.Row():
- aesthetic_weight = gr.Slider(minimum=0, maximum=1, step=0.01, label="Aesthetic weight",
- value=0.9)
- aesthetic_steps = gr.Slider(minimum=0, maximum=50, step=1, label="Aesthetic steps", value=5)
-
- with gr.Row():
- aesthetic_lr = gr.Textbox(label='Aesthetic learning rate',
- placeholder="Aesthetic learning rate", value="0.0001")
- aesthetic_slerp = gr.Checkbox(label="Slerp interpolation", value=False)
- aesthetic_imgs = gr.Dropdown(sorted(shared.aesthetic_embeddings.keys()),
- label="Aesthetic imgs embedding",
- value="None")
-
- modules.ui.create_refresh_button(aesthetic_imgs, shared.update_aesthetic_embeddings, lambda: {"choices": sorted(shared.aesthetic_embeddings.keys())}, "refresh_aesthetic_embeddings")
-
- with gr.Row():
- aesthetic_imgs_text = gr.Textbox(label='Aesthetic text for imgs',
- placeholder="This text is used to rotate the feature space of the imgs embs",
- value="")
- aesthetic_slerp_angle = gr.Slider(label='Slerp angle', minimum=0, maximum=1, step=0.01,
- value=0.1)
- aesthetic_text_negative = gr.Checkbox(label="Is negative text", value=False)
-
- return aesthetic_weight, aesthetic_steps, aesthetic_lr, aesthetic_slerp, aesthetic_imgs, aesthetic_imgs_text, aesthetic_slerp_angle, aesthetic_text_negative
-
-
-aesthetic_clip_model = None
-
-
-def aesthetic_clip():
- global aesthetic_clip_model
-
- if aesthetic_clip_model is None or aesthetic_clip_model.name_or_path != shared.sd_model.cond_stage_model.wrapped.transformer.name_or_path:
- aesthetic_clip_model = CLIPModel.from_pretrained(shared.sd_model.cond_stage_model.wrapped.transformer.name_or_path)
- aesthetic_clip_model.cpu()
-
- return aesthetic_clip_model
-
-
-def generate_imgs_embd(name, folder, batch_size):
- model = aesthetic_clip().to(device)
- processor = CLIPProcessor.from_pretrained(model.name_or_path)
-
- with torch.no_grad():
- embs = []
- for paths in tqdm(iter_to_batched(get_all_images_in_folder(folder), batch_size),
- desc=f"Generating embeddings for {name}"):
- if shared.state.interrupted:
- break
- inputs = processor(images=[Image.open(path) for path in paths], return_tensors="pt").to(device)
- outputs = model.get_image_features(**inputs).cpu()
- embs.append(torch.clone(outputs))
- inputs.to("cpu")
- del inputs, outputs
-
- embs = torch.cat(embs, dim=0).mean(dim=0, keepdim=True)
-
- # The generated embedding will be located here
- path = str(Path(shared.cmd_opts.aesthetic_embeddings_dir) / f"{name}.pt")
- torch.save(embs, path)
-
- model.cpu()
- del processor
- del embs
- gc.collect()
- torch.cuda.empty_cache()
- res = f"""
- Done generating embedding for {name}!
- Aesthetic embedding saved to {html.escape(path)}
- """
- shared.update_aesthetic_embeddings()
- return gr.Dropdown.update(choices=sorted(shared.aesthetic_embeddings.keys()), label="Imgs embedding",
- value="None"), \
- gr.Dropdown.update(choices=sorted(shared.aesthetic_embeddings.keys()),
- label="Imgs embedding",
- value="None"), res, ""
-
-
-def slerp(low, high, val):
- low_norm = low / torch.norm(low, dim=1, keepdim=True)
- high_norm = high / torch.norm(high, dim=1, keepdim=True)
- omega = torch.acos((low_norm * high_norm).sum(1))
- so = torch.sin(omega)
- res = (torch.sin((1.0 - val) * omega) / so).unsqueeze(1) * low + (torch.sin(val * omega) / so).unsqueeze(1) * high
- return res
-
-
-class AestheticCLIP:
- def __init__(self):
- self.skip = False
- self.aesthetic_steps = 0
- self.aesthetic_weight = 0
- self.aesthetic_lr = 0
- self.slerp = False
- self.aesthetic_text_negative = ""
- self.aesthetic_slerp_angle = 0
- self.aesthetic_imgs_text = ""
-
- self.image_embs_name = None
- self.image_embs = None
- self.load_image_embs(None)
-
- def set_aesthetic_params(self, p, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0, image_embs_name=None,
- aesthetic_slerp=True, aesthetic_imgs_text="",
- aesthetic_slerp_angle=0.15,
- aesthetic_text_negative=False):
- self.aesthetic_imgs_text = aesthetic_imgs_text
- self.aesthetic_slerp_angle = aesthetic_slerp_angle
- self.aesthetic_text_negative = aesthetic_text_negative
- self.slerp = aesthetic_slerp
- self.aesthetic_lr = aesthetic_lr
- self.aesthetic_weight = aesthetic_weight
- self.aesthetic_steps = aesthetic_steps
- self.load_image_embs(image_embs_name)
-
- if self.image_embs_name is not None:
- p.extra_generation_params.update({
- "Aesthetic LR": aesthetic_lr,
- "Aesthetic weight": aesthetic_weight,
- "Aesthetic steps": aesthetic_steps,
- "Aesthetic embedding": self.image_embs_name,
- "Aesthetic slerp": aesthetic_slerp,
- "Aesthetic text": aesthetic_imgs_text,
- "Aesthetic text negative": aesthetic_text_negative,
- "Aesthetic slerp angle": aesthetic_slerp_angle,
- })
-
- def set_skip(self, skip):
- self.skip = skip
-
- def load_image_embs(self, image_embs_name):
- if image_embs_name is None or len(image_embs_name) == 0 or image_embs_name == "None":
- image_embs_name = None
- self.image_embs_name = None
- if image_embs_name is not None and self.image_embs_name != image_embs_name:
- self.image_embs_name = image_embs_name
- self.image_embs = torch.load(shared.aesthetic_embeddings[self.image_embs_name], map_location=device)
- self.image_embs /= self.image_embs.norm(dim=-1, keepdim=True)
- self.image_embs.requires_grad_(False)
-
- def __call__(self, z, remade_batch_tokens):
- if not self.skip and self.aesthetic_steps != 0 and self.aesthetic_lr != 0 and self.aesthetic_weight != 0 and self.image_embs_name is not None:
- tokenizer = shared.sd_model.cond_stage_model.tokenizer
- if not opts.use_old_emphasis_implementation:
- remade_batch_tokens = [
- [tokenizer.bos_token_id] + x[:75] + [tokenizer.eos_token_id] for x in
- remade_batch_tokens]
-
- tokens = torch.asarray(remade_batch_tokens).to(device)
-
- model = copy.deepcopy(aesthetic_clip()).to(device)
- model.requires_grad_(True)
- if self.aesthetic_imgs_text is not None and len(self.aesthetic_imgs_text) > 0:
- text_embs_2 = model.get_text_features(
- **tokenizer([self.aesthetic_imgs_text], padding=True, return_tensors="pt").to(device))
- if self.aesthetic_text_negative:
- text_embs_2 = self.image_embs - text_embs_2
- text_embs_2 /= text_embs_2.norm(dim=-1, keepdim=True)
- img_embs = slerp(self.image_embs, text_embs_2, self.aesthetic_slerp_angle)
- else:
- img_embs = self.image_embs
-
- with torch.enable_grad():
-
- # We optimize the model to maximize the similarity
- optimizer = optim.Adam(
- model.text_model.parameters(), lr=self.aesthetic_lr
- )
-
- for _ in trange(self.aesthetic_steps, desc="Aesthetic optimization"):
- text_embs = model.get_text_features(input_ids=tokens)
- text_embs = text_embs / text_embs.norm(dim=-1, keepdim=True)
- sim = text_embs @ img_embs.T
- loss = -sim
- optimizer.zero_grad()
- loss.mean().backward()
- optimizer.step()
-
- zn = model.text_model(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers)
- if opts.CLIP_stop_at_last_layers > 1:
- zn = zn.hidden_states[-opts.CLIP_stop_at_last_layers]
- zn = model.text_model.final_layer_norm(zn)
- else:
- zn = zn.last_hidden_state
- model.cpu()
- del model
- gc.collect()
- torch.cuda.empty_cache()
- zn = torch.concat([zn[77 * i:77 * (i + 1)] for i in range(max(z.shape[1] // 77, 1))], 1)
- if self.slerp:
- z = slerp(z, zn, self.aesthetic_weight)
- else:
- z = z * (1 - self.aesthetic_weight) + zn * self.aesthetic_weight
-
- return z
diff --git a/modules/images_history.py b/modules/images_history.py
index 46b23e569..bc5cf11f0 100644
--- a/modules/images_history.py
+++ b/modules/images_history.py
@@ -1,183 +1,424 @@
import os
import shutil
-import sys
+import time
+import hashlib
+import gradio
+system_bak_path = "webui_log_and_bak"
+custom_tab_name = "custom fold"
+faverate_tab_name = "favorites"
+tabs_list = ["txt2img", "img2img", "extras", faverate_tab_name]
+def is_valid_date(date):
+ try:
+ time.strptime(date, "%Y%m%d")
+ return True
+ except:
+ return False
-def traverse_all_files(output_dir, image_list, curr_dir=None):
- curr_path = output_dir if curr_dir is None else os.path.join(output_dir, curr_dir)
+def reduplicative_file_move(src, dst):
+ def same_name_file(basename, path):
+ name, ext = os.path.splitext(basename)
+ f_list = os.listdir(path)
+ max_num = 0
+ for f in f_list:
+ if len(f) <= len(basename):
+ continue
+ f_ext = f[-len(ext):] if len(ext) > 0 else ""
+ if f[:len(name)] == name and f_ext == ext:
+ if f[len(name)] == "(" and f[-len(ext)-1] == ")":
+ number = f[len(name)+1:-len(ext)-1]
+ if number.isdigit():
+ if int(number) > max_num:
+ max_num = int(number)
+ return f"{name}({max_num + 1}){ext}"
+ name = os.path.basename(src)
+ save_name = os.path.join(dst, name)
+ if not os.path.exists(save_name):
+ shutil.move(src, dst)
+ else:
+ name = same_name_file(name, dst)
+ shutil.move(src, os.path.join(dst, name))
+
+def traverse_all_files(curr_path, image_list, all_type=False):
try:
f_list = os.listdir(curr_path)
except:
- if curr_dir[-10:].rfind(".") > 0 and curr_dir[-4:] != ".txt":
- image_list.append(curr_dir)
+ if all_type or (curr_path[-10:].rfind(".") > 0 and curr_path[-4:] != ".txt" and curr_path[-4:] != ".csv"):
+ image_list.append(curr_path)
return image_list
for file in f_list:
- file = file if curr_dir is None else os.path.join(curr_dir, file)
- file_path = os.path.join(curr_path, file)
- if file[-4:] == ".txt":
+ file = os.path.join(curr_path, file)
+ if (not all_type) and (file[-4:] == ".txt" or file[-4:] == ".csv"):
pass
- elif os.path.isfile(file_path) and file[-10:].rfind(".") > 0:
+ elif os.path.isfile(file) and file[-10:].rfind(".") > 0:
image_list.append(file)
else:
- image_list = traverse_all_files(output_dir, image_list, file)
+ image_list = traverse_all_files(file, image_list)
return image_list
+def auto_sorting(dir_name):
+ bak_path = os.path.join(dir_name, system_bak_path)
+ if not os.path.exists(bak_path):
+ os.mkdir(bak_path)
+ log_file = None
+ files_list = []
+ f_list = os.listdir(dir_name)
+ for file in f_list:
+ if file == system_bak_path:
+ continue
+ file_path = os.path.join(dir_name, file)
+ if not is_valid_date(file):
+ if file[-10:].rfind(".") > 0:
+ files_list.append(file_path)
+ else:
+ files_list = traverse_all_files(file_path, files_list, all_type=True)
-def get_recent_images(dir_name, page_index, step, image_index, tabname):
- page_index = int(page_index)
- image_list = []
- if not os.path.exists(dir_name):
- pass
- elif os.path.isdir(dir_name):
- image_list = traverse_all_files(dir_name, image_list)
- image_list = sorted(image_list, key=lambda file: -os.path.getctime(os.path.join(dir_name, file)))
+ for file in files_list:
+ date_str = time.strftime("%Y%m%d",time.localtime(os.path.getmtime(file)))
+ file_path = os.path.dirname(file)
+ hash_path = hashlib.md5(file_path.encode()).hexdigest()
+ path = os.path.join(dir_name, date_str, hash_path)
+ if not os.path.exists(path):
+ os.makedirs(path)
+ if log_file is None:
+ log_file = open(os.path.join(bak_path,"path_mapping.csv"),"a")
+ log_file.write(f"{hash_path},{file_path}\n")
+ reduplicative_file_move(file, path)
+
+ date_list = []
+ f_list = os.listdir(dir_name)
+ for f in f_list:
+ if is_valid_date(f):
+ date_list.append(f)
+ elif f == system_bak_path:
+ continue
+ else:
+ try:
+ reduplicative_file_move(os.path.join(dir_name, f), bak_path)
+ except:
+ pass
+
+ today = time.strftime("%Y%m%d",time.localtime(time.time()))
+ if today not in date_list:
+ date_list.append(today)
+ return sorted(date_list, reverse=True)
+
+def archive_images(dir_name, date_to):
+ filenames = []
+ batch_size =int(opts.images_history_num_per_page * opts.images_history_pages_num)
+ if batch_size <= 0:
+ batch_size = opts.images_history_num_per_page * 6
+ today = time.strftime("%Y%m%d",time.localtime(time.time()))
+ date_to = today if date_to is None or date_to == "" else date_to
+ date_to_bak = date_to
+ if False: #opts.images_history_reconstruct_directory:
+ date_list = auto_sorting(dir_name)
+ for date in date_list:
+ if date <= date_to:
+ path = os.path.join(dir_name, date)
+ if date == today and not os.path.exists(path):
+ continue
+ filenames = traverse_all_files(path, filenames)
+ if len(filenames) > batch_size:
+ break
+ filenames = sorted(filenames, key=lambda file: -os.path.getmtime(file))
else:
- print(f'ERROR: "{dir_name}" is not a directory. Check the path in the settings.', file=sys.stderr)
- num = 48 if tabname != "extras" else 12
- max_page_index = len(image_list) // num + 1
- page_index = max_page_index if page_index == -1 else page_index + step
- page_index = 1 if page_index < 1 else page_index
- page_index = max_page_index if page_index > max_page_index else page_index
- idx_frm = (page_index - 1) * num
- image_list = image_list[idx_frm:idx_frm + num]
- image_index = int(image_index)
- if image_index < 0 or image_index > len(image_list) - 1:
- current_file = None
- hidden = None
- else:
- current_file = image_list[int(image_index)]
- hidden = os.path.join(dir_name, current_file)
- return [os.path.join(dir_name, file) for file in image_list], page_index, image_list, current_file, hidden, ""
+ filenames = traverse_all_files(dir_name, filenames)
+ total_num = len(filenames)
+ tmparray = [(os.path.getmtime(file), file) for file in filenames ]
+ date_stamp = time.mktime(time.strptime(date_to, "%Y%m%d")) + 86400
+ filenames = []
+ date_list = {date_to:None}
+ date = time.strftime("%Y%m%d",time.localtime(time.time()))
+ for t, f in tmparray:
+ date = time.strftime("%Y%m%d",time.localtime(t))
+ date_list[date] = None
+ if t <= date_stamp:
+ filenames.append((t, f ,date))
+ date_list = sorted(list(date_list.keys()), reverse=True)
+ sort_array = sorted(filenames, key=lambda x:-x[0])
+ if len(sort_array) > batch_size:
+ date = sort_array[batch_size][2]
+ filenames = [x[1] for x in sort_array]
+ else:
+ date = date_to if len(sort_array) == 0 else sort_array[-1][2]
+ filenames = [x[1] for x in sort_array]
+ filenames = [x[1] for x in sort_array if x[2]>= date]
+ num = len(filenames)
+ last_date_from = date_to_bak if num == 0 else time.strftime("%Y%m%d", time.localtime(time.mktime(time.strptime(date, "%Y%m%d")) - 1000))
+ date = date[:4] + "/" + date[4:6] + "/" + date[6:8]
+ date_to_bak = date_to_bak[:4] + "/" + date_to_bak[4:6] + "/" + date_to_bak[6:8]
+ load_info = "
"
+ load_info += f"{total_num} images in this directory. Loaded {num} images during {date} - {date_to_bak}, divided into {int((num + 1) // opts.images_history_num_per_page + 1)} pages"
+ load_info += "
"
+ _, image_list, _, _, visible_num = get_recent_images(1, 0, filenames)
+ return (
+ date_to,
+ load_info,
+ filenames,
+ 1,
+ image_list,
+ "",
+ "",
+ visible_num,
+ last_date_from,
+ gradio.update(visible=total_num > num)
+ )
-
-def first_page_click(dir_name, page_index, image_index, tabname):
- return get_recent_images(dir_name, 1, 0, image_index, tabname)
-
-
-def end_page_click(dir_name, page_index, image_index, tabname):
- return get_recent_images(dir_name, -1, 0, image_index, tabname)
-
-
-def prev_page_click(dir_name, page_index, image_index, tabname):
- return get_recent_images(dir_name, page_index, -1, image_index, tabname)
-
-
-def next_page_click(dir_name, page_index, image_index, tabname):
- return get_recent_images(dir_name, page_index, 1, image_index, tabname)
-
-
-def page_index_change(dir_name, page_index, image_index, tabname):
- return get_recent_images(dir_name, page_index, 0, image_index, tabname)
-
-
-def show_image_info(num, image_path, filenames):
- # print(f"select image {num}")
- file = filenames[int(num)]
- return file, num, os.path.join(image_path, file)
-
-
-def delete_image(delete_num, tabname, dir_name, name, page_index, filenames, image_index):
+def delete_image(delete_num, name, filenames, image_index, visible_num):
if name == "":
return filenames, delete_num
else:
delete_num = int(delete_num)
+ visible_num = int(visible_num)
+ image_index = int(image_index)
index = list(filenames).index(name)
i = 0
new_file_list = []
for name in filenames:
if i >= index and i < index + delete_num:
- path = os.path.join(dir_name, name)
- if os.path.exists(path):
- print(f"Delete file {path}")
- os.remove(path)
- txt_file = os.path.splitext(path)[0] + ".txt"
+ if os.path.exists(name):
+ if visible_num == image_index:
+ new_file_list.append(name)
+ i += 1
+ continue
+ print(f"Delete file {name}")
+ os.remove(name)
+ visible_num -= 1
+ txt_file = os.path.splitext(name)[0] + ".txt"
if os.path.exists(txt_file):
os.remove(txt_file)
else:
- print(f"Not exists file {path}")
+ print(f"Not exists file {name}")
else:
new_file_list.append(name)
i += 1
- return new_file_list, 1
+ return new_file_list, 1, visible_num
+def save_image(file_name):
+ if file_name is not None and os.path.exists(file_name):
+ shutil.copy(file_name, opts.outdir_save)
+
+def get_recent_images(page_index, step, filenames):
+ page_index = int(page_index)
+ num_of_imgs_per_page = int(opts.images_history_num_per_page)
+ max_page_index = len(filenames) // num_of_imgs_per_page + 1
+ page_index = max_page_index if page_index == -1 else page_index + step
+ page_index = 1 if page_index < 1 else page_index
+ page_index = max_page_index if page_index > max_page_index else page_index
+ idx_frm = (page_index - 1) * num_of_imgs_per_page
+ image_list = filenames[idx_frm:idx_frm + num_of_imgs_per_page]
+ length = len(filenames)
+ visible_num = num_of_imgs_per_page if idx_frm + num_of_imgs_per_page <= length else length % num_of_imgs_per_page
+ visible_num = num_of_imgs_per_page if visible_num == 0 else visible_num
+ return page_index, image_list, "", "", visible_num
+
+def loac_batch_click(date_to):
+ if date_to is None:
+ return time.strftime("%Y%m%d",time.localtime(time.time())), []
+ else:
+ return None, []
+def forward_click(last_date_from, date_to_recorder):
+ if len(date_to_recorder) == 0:
+ return None, []
+ if last_date_from == date_to_recorder[-1]:
+ date_to_recorder = date_to_recorder[:-1]
+ if len(date_to_recorder) == 0:
+ return None, []
+ return date_to_recorder[-1], date_to_recorder[:-1]
+
+def backward_click(last_date_from, date_to_recorder):
+ if last_date_from is None or last_date_from == "":
+ return time.strftime("%Y%m%d",time.localtime(time.time())), []
+ if len(date_to_recorder) == 0 or last_date_from != date_to_recorder[-1]:
+ date_to_recorder.append(last_date_from)
+ return last_date_from, date_to_recorder
+
+
+def first_page_click(page_index, filenames):
+ return get_recent_images(1, 0, filenames)
+
+def end_page_click(page_index, filenames):
+ return get_recent_images(-1, 0, filenames)
+
+def prev_page_click(page_index, filenames):
+ return get_recent_images(page_index, -1, filenames)
+
+def next_page_click(page_index, filenames):
+ return get_recent_images(page_index, 1, filenames)
+
+def page_index_change(page_index, filenames):
+ return get_recent_images(page_index, 0, filenames)
+
+def show_image_info(tabname_box, num, page_index, filenames):
+ file = filenames[int(num) + int((page_index - 1) * int(opts.images_history_num_per_page))]
+ tm = "" + time.strftime("%Y-%m-%d %H:%M:%S",time.localtime(os.path.getmtime(file))) + "
"
+ return file, tm, num, file
+
+def enable_page_buttons():
+ return gradio.update(visible=True)
+
+def change_dir(img_dir, date_to):
+ warning = None
+ try:
+ if os.path.exists(img_dir):
+ try:
+ f = os.listdir(img_dir)
+ except:
+ warning = f"'{img_dir} is not a directory"
+ else:
+ warning = "The directory is not exist"
+ except:
+ warning = "The format of the directory is incorrect"
+ if warning is None:
+ today = time.strftime("%Y%m%d",time.localtime(time.time()))
+ return gradio.update(visible=False), gradio.update(visible=True), None, None if date_to != today else today, gradio.update(visible=True), gradio.update(visible=True)
+ else:
+ return gradio.update(visible=True), gradio.update(visible=False), warning, date_to, gradio.update(visible=False), gradio.update(visible=False)
def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict):
- if opts.outdir_samples != "":
- dir_name = opts.outdir_samples
- elif tabname == "txt2img":
+ custom_dir = False
+ if tabname == "txt2img":
dir_name = opts.outdir_txt2img_samples
elif tabname == "img2img":
dir_name = opts.outdir_img2img_samples
elif tabname == "extras":
dir_name = opts.outdir_extras_samples
+ elif tabname == faverate_tab_name:
+ dir_name = opts.outdir_save
else:
- return
- with gr.Row():
- renew_page = gr.Button('Renew Page', elem_id=tabname + "_images_history_renew_page")
- first_page = gr.Button('First Page')
- prev_page = gr.Button('Prev Page')
- page_index = gr.Number(value=1, label="Page Index")
- next_page = gr.Button('Next Page')
- end_page = gr.Button('End Page')
- with gr.Row(elem_id=tabname + "_images_history"):
- with gr.Row():
- with gr.Column(scale=2):
- history_gallery = gr.Gallery(show_label=False, elem_id=tabname + "_images_history_gallery").style(grid=6)
- with gr.Row():
- delete_num = gr.Number(value=1, interactive=True, label="number of images to delete consecutively next")
- delete = gr.Button('Delete', elem_id=tabname + "_images_history_del_button")
- with gr.Column():
- with gr.Row():
- pnginfo_send_to_txt2img = gr.Button('Send to txt2img')
- pnginfo_send_to_img2img = gr.Button('Send to img2img')
- with gr.Row():
- with gr.Column():
- img_file_info = gr.Textbox(label="Generate Info", interactive=False)
- img_file_name = gr.Textbox(label="File Name", interactive=False)
- with gr.Row():
+ custom_dir = True
+ dir_name = None
+
+ if not custom_dir:
+ d = dir_name.split("/")
+ dir_name = d[0]
+ for p in d[1:]:
+ dir_name = os.path.join(dir_name, p)
+ if not os.path.exists(dir_name):
+ os.makedirs(dir_name)
+
+ with gr.Column() as page_panel:
+ with gr.Row():
+ with gr.Column(scale=1, visible=not custom_dir) as load_batch_box:
+ load_batch = gr.Button('Load', elem_id=tabname + "_images_history_start", full_width=True)
+ with gr.Column(scale=4):
+ with gr.Row():
+ img_path = gr.Textbox(dir_name, label="Images directory", placeholder="Input images directory", interactive=custom_dir)
+ with gr.Row():
+ with gr.Column(visible=False, scale=1) as batch_panel:
+ with gr.Row():
+ forward = gr.Button('Prev batch')
+ backward = gr.Button('Next batch')
+ with gr.Column(scale=3):
+ load_info = gr.HTML(visible=not custom_dir)
+ with gr.Row(visible=False) as warning:
+ warning_box = gr.Textbox("Message", interactive=False)
+
+ with gr.Row(visible=not custom_dir, elem_id=tabname + "_images_history") as main_panel:
+ with gr.Column(scale=2):
+ with gr.Row(visible=True) as turn_page_buttons:
+ #date_to = gr.Dropdown(label="Date to")
+ first_page = gr.Button('First Page')
+ prev_page = gr.Button('Prev Page')
+ page_index = gr.Number(value=1, label="Page Index")
+ next_page = gr.Button('Next Page')
+ end_page = gr.Button('End Page')
+
+ history_gallery = gr.Gallery(show_label=False, elem_id=tabname + "_images_history_gallery").style(grid=opts.images_history_grid_num)
+ with gr.Row():
+ delete_num = gr.Number(value=1, interactive=True, label="number of images to delete consecutively next")
+ delete = gr.Button('Delete', elem_id=tabname + "_images_history_del_button")
+
+ with gr.Column():
+ with gr.Row():
+ with gr.Column():
+ img_file_info = gr.Textbox(label="Generate Info", interactive=False, lines=6)
+ gr.HTML("
")
+ img_file_name = gr.Textbox(value="", label="File Name", interactive=False)
+ img_file_time= gr.HTML()
+ with gr.Row():
+ if tabname != faverate_tab_name:
+ save_btn = gr.Button('Collect')
+ pnginfo_send_to_txt2img = gr.Button('Send to txt2img')
+ pnginfo_send_to_img2img = gr.Button('Send to img2img')
+
+
# hiden items
+ with gr.Row(visible=False):
+ renew_page = gr.Button('Refresh page', elem_id=tabname + "_images_history_renew_page")
+ batch_date_to = gr.Textbox(label="Date to")
+ visible_img_num = gr.Number()
+ date_to_recorder = gr.State([])
+ last_date_from = gr.Textbox()
+ tabname_box = gr.Textbox(tabname)
+ image_index = gr.Textbox(value=-1)
+ set_index = gr.Button('set_index', elem_id=tabname + "_images_history_set_index")
+ filenames = gr.State()
+ all_images_list = gr.State()
+ hidden = gr.Image(type="pil")
+ info1 = gr.Textbox()
+ info2 = gr.Textbox()
- img_path = gr.Textbox(dir_name.rstrip("/"), visible=False)
- tabname_box = gr.Textbox(tabname, visible=False)
- image_index = gr.Textbox(value=-1, visible=False)
- set_index = gr.Button('set_index', elem_id=tabname + "_images_history_set_index", visible=False)
- filenames = gr.State()
- hidden = gr.Image(type="pil", visible=False)
- info1 = gr.Textbox(visible=False)
- info2 = gr.Textbox(visible=False)
+ img_path.submit(change_dir, inputs=[img_path, batch_date_to], outputs=[warning, main_panel, warning_box, batch_date_to, load_batch_box, load_info])
- # turn pages
- gallery_inputs = [img_path, page_index, image_index, tabname_box]
- gallery_outputs = [history_gallery, page_index, filenames, img_file_name, hidden, img_file_name]
+ #change batch
+ change_date_output = [batch_date_to, load_info, filenames, page_index, history_gallery, img_file_name, img_file_time, visible_img_num, last_date_from, batch_panel]
+
+ batch_date_to.change(archive_images, inputs=[img_path, batch_date_to], outputs=change_date_output)
+ batch_date_to.change(enable_page_buttons, inputs=None, outputs=[turn_page_buttons])
+ batch_date_to.change(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage")
- first_page.click(first_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
- next_page.click(next_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
- prev_page.click(prev_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
- end_page.click(end_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
- page_index.submit(page_index_change, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
- renew_page.click(page_index_change, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
- # page_index.change(page_index_change, inputs=[tabname_box, img_path, page_index], outputs=[history_gallery, page_index])
+ load_batch.click(loac_batch_click, inputs=[batch_date_to], outputs=[batch_date_to, date_to_recorder])
+ forward.click(forward_click, inputs=[last_date_from, date_to_recorder], outputs=[batch_date_to, date_to_recorder])
+ backward.click(backward_click, inputs=[last_date_from, date_to_recorder], outputs=[batch_date_to, date_to_recorder])
+
+
+ #delete
+ delete.click(delete_image, inputs=[delete_num, img_file_name, filenames, image_index, visible_img_num], outputs=[filenames, delete_num, visible_img_num])
+ delete.click(fn=None, _js="images_history_delete", inputs=[delete_num, tabname_box, image_index], outputs=None)
+ if tabname != faverate_tab_name:
+ save_btn.click(save_image, inputs=[img_file_name], outputs=None)
+
+ #turn page
+ gallery_inputs = [page_index, filenames]
+ gallery_outputs = [page_index, history_gallery, img_file_name, img_file_time, visible_img_num]
+ first_page.click(first_page_click, inputs=gallery_inputs, outputs=gallery_outputs)
+ next_page.click(next_page_click, inputs=gallery_inputs, outputs=gallery_outputs)
+ prev_page.click(prev_page_click, inputs=gallery_inputs, outputs=gallery_outputs)
+ end_page.click(end_page_click, inputs=gallery_inputs, outputs=gallery_outputs)
+ page_index.submit(page_index_change, inputs=gallery_inputs, outputs=gallery_outputs)
+ renew_page.click(page_index_change, inputs=gallery_inputs, outputs=gallery_outputs)
+
+ first_page.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage")
+ next_page.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage")
+ prev_page.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage")
+ end_page.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage")
+ page_index.submit(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage")
+ renew_page.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage")
# other funcitons
- set_index.click(show_image_info, _js="images_history_get_current_img", inputs=[tabname_box, img_path, filenames], outputs=[img_file_name, image_index, hidden])
- img_file_name.change(fn=None, _js="images_history_enable_del_buttons", inputs=None, outputs=None)
- delete.click(delete_image, _js="images_history_delete", inputs=[delete_num, tabname_box, img_path, img_file_name, page_index, filenames, image_index], outputs=[filenames, delete_num])
+ set_index.click(show_image_info, _js="images_history_get_current_img", inputs=[tabname_box, image_index, page_index, filenames], outputs=[img_file_name, img_file_time, image_index, hidden])
+ img_file_name.change(fn=None, _js="images_history_enable_del_buttons", inputs=None, outputs=None)
hidden.change(fn=run_pnginfo, inputs=[hidden], outputs=[info1, img_file_info, info2])
-
- # pnginfo.click(fn=run_pnginfo, inputs=[hidden], outputs=[info1, img_file_info, info2])
switch_dict["fn"](pnginfo_send_to_txt2img, switch_dict["t2i"], img_file_info, 'switch_to_txt2img')
switch_dict["fn"](pnginfo_send_to_img2img, switch_dict["i2i"], img_file_info, 'switch_to_img2img_img2img')
+
-def create_history_tabs(gr, opts, run_pnginfo, switch_dict):
+def create_history_tabs(gr, sys_opts, cmp_ops, run_pnginfo, switch_dict):
+ global opts;
+ opts = sys_opts
+ loads_files_num = int(opts.images_history_num_per_page)
+ num_of_imgs_per_page = int(opts.images_history_num_per_page * opts.images_history_pages_num)
+ if cmp_ops.browse_all_images:
+ tabs_list.append(custom_tab_name)
with gr.Blocks(analytics_enabled=False) as images_history:
with gr.Tabs() as tabs:
- with gr.Tab("txt2img history"):
- with gr.Blocks(analytics_enabled=False) as images_history_txt2img:
- show_images_history(gr, opts, "txt2img", run_pnginfo, switch_dict)
- with gr.Tab("img2img history"):
- with gr.Blocks(analytics_enabled=False) as images_history_img2img:
- show_images_history(gr, opts, "img2img", run_pnginfo, switch_dict)
- with gr.Tab("extras history"):
- with gr.Blocks(analytics_enabled=False) as images_history_img2img:
- show_images_history(gr, opts, "extras", run_pnginfo, switch_dict)
+ for tab in tabs_list:
+ with gr.Tab(tab):
+ with gr.Blocks(analytics_enabled=False) :
+ show_images_history(gr, opts, tab, run_pnginfo, switch_dict)
+ gradio.Checkbox(opts.images_history_preload, elem_id="images_history_preload", visible=False)
+ gradio.Textbox(",".join(tabs_list), elem_id="images_history_tabnames_list", visible=False)
+
return images_history
diff --git a/modules/img2img.py b/modules/img2img.py
index eea5199b9..8d9f7cf98 100644
--- a/modules/img2img.py
+++ b/modules/img2img.py
@@ -56,7 +56,7 @@ def process_batch(p, input_dir, output_dir, args):
processed_image.save(os.path.join(output_dir, filename))
-def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_img_inpaint, init_mask_inpaint, mask_mode, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0, aesthetic_imgs=None, aesthetic_slerp=False, aesthetic_imgs_text="", aesthetic_slerp_angle=0.15, aesthetic_text_negative=False, *args):
+def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_img_inpaint, init_mask_inpaint, mask_mode, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, *args):
is_inpaint = mode == 1
is_batch = mode == 2
@@ -109,7 +109,8 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro
inpainting_mask_invert=inpainting_mask_invert,
)
- shared.aesthetic_clip.set_aesthetic_params(p, float(aesthetic_lr), float(aesthetic_weight), int(aesthetic_steps), aesthetic_imgs, aesthetic_slerp, aesthetic_imgs_text, aesthetic_slerp_angle, aesthetic_text_negative)
+ p.scripts = modules.scripts.scripts_txt2img
+ p.script_args = args
if shared.cmd_opts.enable_console_prompts:
print(f"\nimg2img: {prompt}", file=shared.progress_print_out)
diff --git a/modules/processing.py b/modules/processing.py
index ff1ec4c9b..372489f7c 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -104,6 +104,12 @@ class StableDiffusionProcessing():
self.seed_resize_from_h = 0
self.seed_resize_from_w = 0
+ self.scripts = None
+ self.script_args = None
+ self.all_prompts = None
+ self.all_seeds = None
+ self.all_subseeds = None
+
def init(self, all_prompts, all_seeds, all_subseeds):
pass
@@ -350,32 +356,35 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
shared.prompt_styles.apply_styles(p)
if type(p.prompt) == list:
- all_prompts = p.prompt
+ p.all_prompts = p.prompt
else:
- all_prompts = p.batch_size * p.n_iter * [p.prompt]
+ p.all_prompts = p.batch_size * p.n_iter * [p.prompt]
if type(seed) == list:
- all_seeds = seed
+ p.all_seeds = seed
else:
- all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(all_prompts))]
+ p.all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(p.all_prompts))]
if type(subseed) == list:
- all_subseeds = subseed
+ p.all_subseeds = subseed
else:
- all_subseeds = [int(subseed) + x for x in range(len(all_prompts))]
+ p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))]
def infotext(iteration=0, position_in_batch=0):
- return create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration, position_in_batch)
+ return create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments, iteration, position_in_batch)
if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
model_hijack.embedding_db.load_textual_inversion_embeddings()
+ if p.scripts is not None:
+ p.scripts.run_alwayson_scripts(p)
+
infotexts = []
output_images = []
with torch.no_grad(), p.sd_model.ema_scope():
with devices.autocast():
- p.init(all_prompts, all_seeds, all_subseeds)
+ p.init(p.all_prompts, p.all_seeds, p.all_subseeds)
if state.job_count == -1:
state.job_count = p.n_iter
@@ -387,9 +396,9 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
if state.interrupted:
break
- prompts = all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
- seeds = all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
- subseeds = all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
+ prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
+ seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
+ subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
if (len(prompts) == 0):
break
@@ -490,10 +499,10 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
index_of_first_image = 1
if opts.grid_save:
- images.save_image(grid, p.outpath_grids, "grid", all_seeds[0], all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True)
+ images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True)
devices.torch_gc()
- return Processed(p, output_images, all_seeds[0], infotext() + "".join(["\n\n" + x for x in comments]), subseed=all_subseeds[0], all_prompts=all_prompts, all_seeds=all_seeds, all_subseeds=all_subseeds, index_of_first_image=index_of_first_image, infotexts=infotexts)
+ return Processed(p, output_images, p.all_seeds[0], infotext() + "".join(["\n\n" + x for x in comments]), subseed=p.all_subseeds[0], all_prompts=p.all_prompts, all_seeds=p.all_seeds, all_subseeds=p.all_subseeds, index_of_first_image=index_of_first_image, infotexts=infotexts)
class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
diff --git a/modules/script_callbacks.py b/modules/script_callbacks.py
new file mode 100644
index 000000000..866b7acdf
--- /dev/null
+++ b/modules/script_callbacks.py
@@ -0,0 +1,42 @@
+
+callbacks_model_loaded = []
+callbacks_ui_tabs = []
+
+
+def clear_callbacks():
+ callbacks_model_loaded.clear()
+ callbacks_ui_tabs.clear()
+
+
+def model_loaded_callback(sd_model):
+ for callback in callbacks_model_loaded:
+ callback(sd_model)
+
+
+def ui_tabs_callback():
+ res = []
+
+ for callback in callbacks_ui_tabs:
+ res += callback() or []
+
+ return res
+
+
+def on_model_loaded(callback):
+ """register a function to be called when the stable diffusion model is created; the model is
+ passed as an argument"""
+ callbacks_model_loaded.append(callback)
+
+
+def on_ui_tabs(callback):
+ """register a function to be called when the UI is creating new tabs.
+ The function must either return a None, which means no new tabs to be added, or a list, where
+ each element is a tuple:
+ (gradio_component, title, elem_id)
+
+ gradio_component is a gradio component to be used for contents of the tab (usually gr.Blocks)
+ title is tab text displayed to user in the UI
+ elem_id is HTML id for the tab
+ """
+ callbacks_ui_tabs.append(callback)
+
diff --git a/modules/scripts.py b/modules/scripts.py
index 1039fa9cd..9323af3e3 100644
--- a/modules/scripts.py
+++ b/modules/scripts.py
@@ -1,86 +1,175 @@
import os
import sys
import traceback
+from collections import namedtuple
import modules.ui as ui
import gradio as gr
from modules.processing import StableDiffusionProcessing
-from modules import shared
+from modules import shared, paths, script_callbacks
+
+AlwaysVisible = object()
+
class Script:
filename = None
args_from = None
args_to = None
+ alwayson = False
+
+ infotext_fields = None
+ """if set in ui(), this is a list of pairs of gradio component + text; the text will be used when
+ parsing infotext to set the value for the component; see ui.py's txt2img_paste_fields for an example
+ """
- # The title of the script. This is what will be displayed in the dropdown menu.
def title(self):
+ """this function should return the title of the script. This is what will be displayed in the dropdown menu."""
+
raise NotImplementedError()
- # How the script is displayed in the UI. See https://gradio.app/docs/#components
- # for the different UI components you can use and how to create them.
- # Most UI components can return a value, such as a boolean for a checkbox.
- # The returned values are passed to the run method as parameters.
def ui(self, is_img2img):
+ """this function should create gradio UI elements. See https://gradio.app/docs/#components
+ The return value should be an array of all components that are used in processing.
+ Values of those returned componenbts will be passed to run() and process() functions.
+ """
+
pass
- # Determines when the script should be shown in the dropdown menu via the
- # returned value. As an example:
- # is_img2img is True if the current tab is img2img, and False if it is txt2img.
- # Thus, return is_img2img to only show the script on the img2img tab.
def show(self, is_img2img):
+ """
+ is_img2img is True if this function is called for the img2img interface, and Fasle otherwise
+
+ This function should return:
+ - False if the script should not be shown in UI at all
+ - True if the script should be shown in UI if it's scelected in the scripts drowpdown
+ - script.AlwaysVisible if the script should be shown in UI at all times
+ """
+
return True
- # This is where the additional processing is implemented. The parameters include
- # self, the model object "p" (a StableDiffusionProcessing class, see
- # processing.py), and the parameters returned by the ui method.
- # Custom functions can be defined here, and additional libraries can be imported
- # to be used in processing. The return value should be a Processed object, which is
- # what is returned by the process_images method.
- def run(self, *args):
+ def run(self, p, *args):
+ """
+ This function is called if the script has been selected in the script dropdown.
+ It must do all processing and return the Processed object with results, same as
+ one returned by processing.process_images.
+
+ Usually the processing is done by calling the processing.process_images function.
+
+ args contains all values returned by components from ui()
+ """
+
raise NotImplementedError()
- # The description method is currently unused.
- # To add a description that appears when hovering over the title, amend the "titles"
- # dict in script.js to include the script title (returned by title) as a key, and
- # your description as the value.
+ def process(self, p, *args):
+ """
+ This function is called before processing begins for AlwaysVisible scripts.
+ scripts. You can modify the processing object (p) here, inject hooks, etc.
+ """
+
+ pass
+
def describe(self):
+ """unused"""
return ""
+current_basedir = paths.script_path
+
+
+def basedir():
+ """returns the base directory for the current script. For scripts in the main scripts directory,
+ this is the main directory (where webui.py resides), and for scripts in extensions directory
+ (ie extensions/aesthetic/script/aesthetic.py), this is extension's directory (extensions/aesthetic)
+ """
+ return current_basedir
+
+
scripts_data = []
+ScriptFile = namedtuple("ScriptFile", ["basedir", "filename", "path"])
+ScriptClassData = namedtuple("ScriptClassData", ["script_class", "path", "basedir"])
-def load_scripts(basedir):
- if not os.path.exists(basedir):
- return
+def list_scripts(scriptdirname, extension):
+ scripts_list = []
- for filename in sorted(os.listdir(basedir)):
- path = os.path.join(basedir, filename)
+ basedir = os.path.join(paths.script_path, scriptdirname)
+ if os.path.exists(basedir):
+ for filename in sorted(os.listdir(basedir)):
+ scripts_list.append(ScriptFile(paths.script_path, filename, os.path.join(basedir, filename)))
- if os.path.splitext(path)[1].lower() != '.py':
+ extdir = os.path.join(paths.script_path, "extensions")
+ if os.path.exists(extdir):
+ for dirname in sorted(os.listdir(extdir)):
+ dirpath = os.path.join(extdir, dirname)
+ scriptdirpath = os.path.join(dirpath, scriptdirname)
+
+ if not os.path.isdir(scriptdirpath):
+ continue
+
+ for filename in sorted(os.listdir(scriptdirpath)):
+ scripts_list.append(ScriptFile(dirpath, filename, os.path.join(scriptdirpath, filename)))
+
+ scripts_list = [x for x in scripts_list if os.path.splitext(x.path)[1].lower() == extension and os.path.isfile(x.path)]
+
+ return scripts_list
+
+
+def list_files_with_name(filename):
+ res = []
+
+ dirs = [paths.script_path]
+
+ extdir = os.path.join(paths.script_path, "extensions")
+ if os.path.exists(extdir):
+ dirs += [os.path.join(extdir, d) for d in sorted(os.listdir(extdir))]
+
+ for dirpath in dirs:
+ if not os.path.isdir(dirpath):
continue
- if not os.path.isfile(path):
- continue
+ path = os.path.join(dirpath, filename)
+ if os.path.isfile(filename):
+ res.append(path)
+ return res
+
+
+def load_scripts():
+ global current_basedir
+ scripts_data.clear()
+ script_callbacks.clear_callbacks()
+
+ scripts_list = list_scripts("scripts", ".py")
+
+ syspath = sys.path
+
+ for scriptfile in sorted(scripts_list):
try:
- with open(path, "r", encoding="utf8") as file:
+ if scriptfile.basedir != paths.script_path:
+ sys.path = [scriptfile.basedir] + sys.path
+ current_basedir = scriptfile.basedir
+
+ with open(scriptfile.path, "r", encoding="utf8") as file:
text = file.read()
from types import ModuleType
- compiled = compile(text, path, 'exec')
- module = ModuleType(filename)
+ compiled = compile(text, scriptfile.path, 'exec')
+ module = ModuleType(scriptfile.filename)
exec(compiled, module.__dict__)
for key, script_class in module.__dict__.items():
if type(script_class) == type and issubclass(script_class, Script):
- scripts_data.append((script_class, path))
+ scripts_data.append(ScriptClassData(script_class, scriptfile.path, scriptfile.basedir))
except Exception:
- print(f"Error loading script: {filename}", file=sys.stderr)
+ print(f"Error loading script: {scriptfile.filename}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
+ finally:
+ sys.path = syspath
+ current_basedir = paths.script_path
+
def wrap_call(func, filename, funcname, *args, default=None, **kwargs):
try:
@@ -96,56 +185,80 @@ def wrap_call(func, filename, funcname, *args, default=None, **kwargs):
class ScriptRunner:
def __init__(self):
self.scripts = []
+ self.selectable_scripts = []
+ self.alwayson_scripts = []
self.titles = []
+ self.infotext_fields = []
def setup_ui(self, is_img2img):
- for script_class, path in scripts_data:
+ for script_class, path, basedir in scripts_data:
script = script_class()
script.filename = path
- if not script.show(is_img2img):
- continue
+ visibility = script.show(is_img2img)
- self.scripts.append(script)
+ if visibility == AlwaysVisible:
+ self.scripts.append(script)
+ self.alwayson_scripts.append(script)
+ script.alwayson = True
- self.titles = [wrap_call(script.title, script.filename, "title") or f"{script.filename} [error]" for script in self.scripts]
+ elif visibility:
+ self.scripts.append(script)
+ self.selectable_scripts.append(script)
- dropdown = gr.Dropdown(label="Script", choices=["None"] + self.titles, value="None", type="index")
- dropdown.save_to_config = True
- inputs = [dropdown]
+ self.titles = [wrap_call(script.title, script.filename, "title") or f"{script.filename} [error]" for script in self.selectable_scripts]
- for script in self.scripts:
+ inputs = [None]
+ inputs_alwayson = [True]
+
+ def create_script_ui(script, inputs, inputs_alwayson):
script.args_from = len(inputs)
script.args_to = len(inputs)
controls = wrap_call(script.ui, script.filename, "ui", is_img2img)
if controls is None:
- continue
+ return
for control in controls:
control.custom_script_source = os.path.basename(script.filename)
- control.visible = False
+ if not script.alwayson:
+ control.visible = False
+
+ if script.infotext_fields is not None:
+ self.infotext_fields += script.infotext_fields
inputs += controls
+ inputs_alwayson += [script.alwayson for _ in controls]
script.args_to = len(inputs)
+ for script in self.alwayson_scripts:
+ with gr.Group():
+ create_script_ui(script, inputs, inputs_alwayson)
+
+ dropdown = gr.Dropdown(label="Script", choices=["None"] + self.titles, value="None", type="index")
+ dropdown.save_to_config = True
+ inputs[0] = dropdown
+
+ for script in self.selectable_scripts:
+ create_script_ui(script, inputs, inputs_alwayson)
+
def select_script(script_index):
- if 0 < script_index <= len(self.scripts):
- script = self.scripts[script_index-1]
+ if 0 < script_index <= len(self.selectable_scripts):
+ script = self.selectable_scripts[script_index-1]
args_from = script.args_from
args_to = script.args_to
else:
args_from = 0
args_to = 0
- return [ui.gr_show(True if i == 0 else args_from <= i < args_to) for i in range(len(inputs))]
+ return [ui.gr_show(True if i == 0 else args_from <= i < args_to or is_alwayson) for i, is_alwayson in enumerate(inputs_alwayson)]
def init_field(title):
if title == 'None':
return
script_index = self.titles.index(title)
- script = self.scripts[script_index]
+ script = self.selectable_scripts[script_index]
for i in range(script.args_from, script.args_to):
inputs[i].visible = True
@@ -164,7 +277,7 @@ class ScriptRunner:
if script_index == 0:
return None
- script = self.scripts[script_index-1]
+ script = self.selectable_scripts[script_index-1]
if script is None:
return None
@@ -176,7 +289,16 @@ class ScriptRunner:
return processed
- def reload_sources(self):
+ def run_alwayson_scripts(self, p):
+ for script in self.alwayson_scripts:
+ try:
+ script_args = p.script_args[script.args_from:script.args_to]
+ script.process(p, *script_args)
+ except Exception:
+ print(f"Error running alwayson script: {script.filename}", file=sys.stderr)
+ print(traceback.format_exc(), file=sys.stderr)
+
+ def reload_sources(self, cache):
for si, script in list(enumerate(self.scripts)):
with open(script.filename, "r", encoding="utf8") as file:
args_from = script.args_from
@@ -186,9 +308,12 @@ class ScriptRunner:
from types import ModuleType
- compiled = compile(text, filename, 'exec')
- module = ModuleType(script.filename)
- exec(compiled, module.__dict__)
+ module = cache.get(filename, None)
+ if module is None:
+ compiled = compile(text, filename, 'exec')
+ module = ModuleType(script.filename)
+ exec(compiled, module.__dict__)
+ cache[filename] = module
for key, script_class in module.__dict__.items():
if type(script_class) == type and issubclass(script_class, Script):
@@ -197,19 +322,22 @@ class ScriptRunner:
self.scripts[si].args_from = args_from
self.scripts[si].args_to = args_to
+
scripts_txt2img = ScriptRunner()
scripts_img2img = ScriptRunner()
+
def reload_script_body_only():
- scripts_txt2img.reload_sources()
- scripts_img2img.reload_sources()
+ cache = {}
+ scripts_txt2img.reload_sources(cache)
+ scripts_img2img.reload_sources(cache)
-def reload_scripts(basedir):
+def reload_scripts():
global scripts_txt2img, scripts_img2img
- scripts_data.clear()
- load_scripts(basedir)
+ load_scripts()
scripts_txt2img = ScriptRunner()
scripts_img2img = ScriptRunner()
+
diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py
index 1f8587d15..0f10828ed 100644
--- a/modules/sd_hijack.py
+++ b/modules/sd_hijack.py
@@ -332,7 +332,6 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
multipliers.append([1.0] * 75)
z1 = self.process_tokens(tokens, multipliers)
- z1 = shared.aesthetic_clip(z1, remade_batch_tokens)
z = z1 if z is None else torch.cat((z, z1), axis=-2)
remade_batch_tokens = rem_tokens
diff --git a/modules/sd_models.py b/modules/sd_models.py
index d99dbce87..f9b3063d3 100644
--- a/modules/sd_models.py
+++ b/modules/sd_models.py
@@ -7,7 +7,7 @@ from omegaconf import OmegaConf
from ldm.util import instantiate_from_config
-from modules import shared, modelloader, devices
+from modules import shared, modelloader, devices, script_callbacks
from modules.paths import models_path
from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inpainting
@@ -238,6 +238,9 @@ def load_model(checkpoint_info=None):
sd_hijack.model_hijack.hijack(sd_model)
sd_model.eval()
+ shared.sd_model = sd_model
+
+ script_callbacks.model_loaded_callback(sd_model)
print(f"Model loaded.")
return sd_model
@@ -252,7 +255,7 @@ def reload_model_weights(sd_model, info=None):
if sd_model.sd_checkpoint_info.config != checkpoint_info.config or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info):
checkpoints_loaded.clear()
- shared.sd_model = load_model(checkpoint_info)
+ load_model(checkpoint_info)
return shared.sd_model
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
diff --git a/modules/shared.py b/modules/shared.py
index 03032a47b..5d83971ea 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -31,7 +31,6 @@ parser.add_argument("--no-half-vae", action='store_true', help="do not switch th
parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)")
parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
parser.add_argument("--embeddings-dir", type=str, default=os.path.join(script_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)")
-parser.add_argument("--aesthetic_embeddings-dir", type=str, default=os.path.join(models_path, 'aesthetic_embeddings'), help="aesthetic_embeddings directory(default: aesthetic_embeddings)")
parser.add_argument("--hypernetwork-dir", type=str, default=os.path.join(models_path, 'hypernetworks'), help="hypernetwork directory")
parser.add_argument("--localizations-dir", type=str, default=os.path.join(script_path, 'localizations'), help="localizations directory")
parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui")
@@ -81,6 +80,7 @@ parser.add_argument("--disable-safe-unpickle", action='store_true', help="disabl
parser.add_argument("--api", action='store_true', help="use api=True to launch the api with the webui")
parser.add_argument("--nowebui", action='store_true', help="use api=True to launch the api instead of the webui")
parser.add_argument("--device-id", type=str, help="Select the default CUDA device to use (export CUDA_VISIBLE_DEVICES=0,1,etc might be needed before)", default=None)
+parser.add_argument("--browse-all-images", action='store_true', help="Allow browsing all images by Image Browser", default=False)
cmd_opts = parser.parse_args()
restricted_opts = [
@@ -109,21 +109,6 @@ os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True)
hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
loaded_hypernetwork = None
-
-os.makedirs(cmd_opts.aesthetic_embeddings_dir, exist_ok=True)
-aesthetic_embeddings = {}
-
-
-def update_aesthetic_embeddings():
- global aesthetic_embeddings
- aesthetic_embeddings = {f.replace(".pt", ""): os.path.join(cmd_opts.aesthetic_embeddings_dir, f) for f in
- os.listdir(cmd_opts.aesthetic_embeddings_dir) if f.endswith(".pt")}
- aesthetic_embeddings = OrderedDict(**{"None": None}, **aesthetic_embeddings)
-
-
-update_aesthetic_embeddings()
-
-
def reload_hypernetworks():
global hypernetworks
@@ -333,6 +318,14 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters"
'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}),
}))
+options_templates.update(options_section(('images-history', "Images Browser"), {
+ #"images_history_reconstruct_directory": OptionInfo(False, "Reconstruct output directory structure.This can greatly improve the speed of loading , but will change the original output directory structure"),
+ "images_history_preload": OptionInfo(False, "Preload images at startup"),
+ "images_history_num_per_page": OptionInfo(36, "Number of pictures displayed on each page"),
+ "images_history_pages_num": OptionInfo(6, "Minimum number of pages per load "),
+ "images_history_grid_num": OptionInfo(6, "Number of grids in each row"),
+
+}))
class Options:
data = None
@@ -407,9 +400,6 @@ sd_model = None
clip_model = None
-from modules.aesthetic_clip import AestheticCLIP
-aesthetic_clip = AestheticCLIP()
-
progress_print_out = sys.stdout
diff --git a/modules/txt2img.py b/modules/txt2img.py
index 1761cfa2c..c9d5a0906 100644
--- a/modules/txt2img.py
+++ b/modules/txt2img.py
@@ -7,7 +7,7 @@ import modules.processing as processing
from modules.ui import plaintext_to_html
-def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, firstphase_width: int, firstphase_height: int, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0, aesthetic_imgs=None, aesthetic_slerp=False, aesthetic_imgs_text="", aesthetic_slerp_angle=0.15, aesthetic_text_negative=False, *args):
+def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, firstphase_width: int, firstphase_height: int, *args):
p = StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
outpath_samples=opts.outdir_samples or opts.outdir_txt2img_samples,
@@ -36,7 +36,8 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2:
firstphase_height=firstphase_height if enable_hr else None,
)
- shared.aesthetic_clip.set_aesthetic_params(p, float(aesthetic_lr), float(aesthetic_weight), int(aesthetic_steps), aesthetic_imgs, aesthetic_slerp, aesthetic_imgs_text, aesthetic_slerp_angle, aesthetic_text_negative)
+ p.scripts = modules.scripts.scripts_txt2img
+ p.script_args = args
if cmd_opts.enable_console_prompts:
print(f"\ntxt2img: {prompt}", file=shared.progress_print_out)
diff --git a/modules/ui.py b/modules/ui.py
index 75f98f860..299861249 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -23,10 +23,10 @@ import gradio as gr
import gradio.utils
import gradio.routes
-from modules import sd_hijack, sd_models, localization
+from modules import sd_hijack, sd_models, localization, script_callbacks
from modules.paths import script_path
-from modules.shared import opts, cmd_opts, restricted_opts, aesthetic_embeddings
+from modules.shared import opts, cmd_opts, restricted_opts
if cmd_opts.deepdanbooru:
from modules.deepbooru import get_deepbooru_tags
@@ -44,7 +44,6 @@ from modules.images import save_image
import modules.textual_inversion.ui
import modules.hypernetworks.ui
-import modules.aesthetic_clip as aesthetic_clip
import modules.images_history as img_his
@@ -662,8 +661,6 @@ def create_ui(wrap_gradio_gpu_call):
seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs()
- aesthetic_weight, aesthetic_steps, aesthetic_lr, aesthetic_slerp, aesthetic_imgs, aesthetic_imgs_text, aesthetic_slerp_angle, aesthetic_text_negative = aesthetic_clip.create_ui()
-
with gr.Group():
custom_inputs = modules.scripts.scripts_txt2img.setup_ui(is_img2img=False)
@@ -718,14 +715,6 @@ def create_ui(wrap_gradio_gpu_call):
denoising_strength,
firstphase_width,
firstphase_height,
- aesthetic_lr,
- aesthetic_weight,
- aesthetic_steps,
- aesthetic_imgs,
- aesthetic_slerp,
- aesthetic_imgs_text,
- aesthetic_slerp_angle,
- aesthetic_text_negative
] + custom_inputs,
outputs=[
@@ -804,14 +793,7 @@ def create_ui(wrap_gradio_gpu_call):
(hr_options, lambda d: gr.Row.update(visible="Denoising strength" in d)),
(firstphase_width, "First pass size-1"),
(firstphase_height, "First pass size-2"),
- (aesthetic_lr, "Aesthetic LR"),
- (aesthetic_weight, "Aesthetic weight"),
- (aesthetic_steps, "Aesthetic steps"),
- (aesthetic_imgs, "Aesthetic embedding"),
- (aesthetic_slerp, "Aesthetic slerp"),
- (aesthetic_imgs_text, "Aesthetic text"),
- (aesthetic_text_negative, "Aesthetic text negative"),
- (aesthetic_slerp_angle, "Aesthetic slerp angle"),
+ *modules.scripts.scripts_txt2img.infotext_fields
]
txt2img_preview_params = [
@@ -896,8 +878,6 @@ def create_ui(wrap_gradio_gpu_call):
seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs()
- aesthetic_weight_im, aesthetic_steps_im, aesthetic_lr_im, aesthetic_slerp_im, aesthetic_imgs_im, aesthetic_imgs_text_im, aesthetic_slerp_angle_im, aesthetic_text_negative_im = aesthetic_clip.create_ui()
-
with gr.Group():
custom_inputs = modules.scripts.scripts_img2img.setup_ui(is_img2img=True)
@@ -988,14 +968,6 @@ def create_ui(wrap_gradio_gpu_call):
inpainting_mask_invert,
img2img_batch_input_dir,
img2img_batch_output_dir,
- aesthetic_lr_im,
- aesthetic_weight_im,
- aesthetic_steps_im,
- aesthetic_imgs_im,
- aesthetic_slerp_im,
- aesthetic_imgs_text_im,
- aesthetic_slerp_angle_im,
- aesthetic_text_negative_im,
] + custom_inputs,
outputs=[
img2img_gallery,
@@ -1087,14 +1059,7 @@ def create_ui(wrap_gradio_gpu_call):
(seed_resize_from_w, "Seed resize from-1"),
(seed_resize_from_h, "Seed resize from-2"),
(denoising_strength, "Denoising strength"),
- (aesthetic_lr_im, "Aesthetic LR"),
- (aesthetic_weight_im, "Aesthetic weight"),
- (aesthetic_steps_im, "Aesthetic steps"),
- (aesthetic_imgs_im, "Aesthetic embedding"),
- (aesthetic_slerp_im, "Aesthetic slerp"),
- (aesthetic_imgs_text_im, "Aesthetic text"),
- (aesthetic_text_negative_im, "Aesthetic text negative"),
- (aesthetic_slerp_angle_im, "Aesthetic slerp angle"),
+ *modules.scripts.scripts_img2img.infotext_fields
]
token_button.click(fn=update_token_counter, inputs=[img2img_prompt, steps], outputs=[token_counter])
@@ -1217,12 +1182,12 @@ def create_ui(wrap_gradio_gpu_call):
)
#images history
images_history_switch_dict = {
- "fn":modules.generation_parameters_copypaste.connect_paste,
- "t2i":txt2img_paste_fields,
- "i2i":img2img_paste_fields
+ "fn": modules.generation_parameters_copypaste.connect_paste,
+ "t2i": txt2img_paste_fields,
+ "i2i": img2img_paste_fields
}
- images_history = img_his.create_history_tabs(gr, opts, wrap_gradio_call(modules.extras.run_pnginfo), images_history_switch_dict)
+ images_history = img_his.create_history_tabs(gr, opts, cmd_opts, wrap_gradio_call(modules.extras.run_pnginfo), images_history_switch_dict)
with gr.Blocks() as modelmerger_interface:
with gr.Row().style(equal_height=False):
@@ -1264,18 +1229,6 @@ def create_ui(wrap_gradio_gpu_call):
with gr.Column():
create_embedding = gr.Button(value="Create embedding", variant='primary')
- with gr.Tab(label="Create aesthetic images embedding"):
-
- new_embedding_name_ae = gr.Textbox(label="Name")
- process_src_ae = gr.Textbox(label='Source directory')
- batch_ae = gr.Slider(minimum=1, maximum=1024, step=1, label="Batch size", value=256)
- with gr.Row():
- with gr.Column(scale=3):
- gr.HTML(value="")
-
- with gr.Column():
- create_embedding_ae = gr.Button(value="Create images embedding", variant='primary')
-
with gr.Tab(label="Create hypernetwork"):
new_hypernetwork_name = gr.Textbox(label="Name")
new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"])
@@ -1375,21 +1328,6 @@ def create_ui(wrap_gradio_gpu_call):
]
)
- create_embedding_ae.click(
- fn=aesthetic_clip.generate_imgs_embd,
- inputs=[
- new_embedding_name_ae,
- process_src_ae,
- batch_ae
- ],
- outputs=[
- aesthetic_imgs,
- aesthetic_imgs_im,
- ti_output,
- ti_outcome,
- ]
- )
-
create_hypernetwork.click(
fn=modules.hypernetworks.ui.create_hypernetwork,
inputs=[
@@ -1580,10 +1518,10 @@ Requested path was: {f}
if not opts.same_type(value, opts.data_labels[key].default):
return gr.update(visible=True), opts.dumpjson()
+ oldval = opts.data.get(key, None)
if cmd_opts.hide_ui_dir_config and key in restricted_opts:
return gr.update(value=oldval), opts.dumpjson()
- oldval = opts.data.get(key, None)
opts.data[key] = value
if oldval != value:
@@ -1689,19 +1627,24 @@ Requested path was: {f}
(img2img_interface, "img2img", "img2img"),
(extras_interface, "Extras", "extras"),
(pnginfo_interface, "PNG Info", "pnginfo"),
- (images_history, "History", "images_history"),
+ (images_history, "Image Browser", "images_history"),
(modelmerger_interface, "Checkpoint Merger", "modelmerger"),
(train_interface, "Train", "ti"),
- (settings_interface, "Settings", "settings"),
]
- with open(os.path.join(script_path, "style.css"), "r", encoding="utf8") as file:
- css = file.read()
+ interfaces += script_callbacks.ui_tabs_callback()
+
+ interfaces += [(settings_interface, "Settings", "settings")]
+
+ css = ""
+
+ for cssfile in modules.scripts.list_files_with_name("style.css"):
+ with open(cssfile, "r", encoding="utf8") as file:
+ css += file.read() + "\n"
if os.path.exists(os.path.join(script_path, "user.css")):
with open(os.path.join(script_path, "user.css"), "r", encoding="utf8") as file:
- usercss = file.read()
- css += usercss
+ css += file.read() + "\n"
if not cmd_opts.no_progressbar_hiding:
css += css_hide_progressbar
@@ -1924,9 +1867,9 @@ def load_javascript(raw_response):
with open(os.path.join(script_path, "script.js"), "r", encoding="utf8") as jsfile:
javascript = f''
- jsdir = os.path.join(script_path, "javascript")
- for filename in sorted(os.listdir(jsdir)):
- with open(os.path.join(jsdir, filename), "r", encoding="utf8") as jsfile:
+ scripts_list = modules.scripts.list_scripts("javascript", ".js")
+ for basedir, filename, path in scripts_list:
+ with open(path, "r", encoding="utf8") as jsfile:
javascript += f"\n"
if cmd_opts.theme is not None:
@@ -1944,6 +1887,5 @@ def load_javascript(raw_response):
gradio.routes.templates.TemplateResponse = template_response
-reload_javascript = partial(load_javascript,
- gradio.routes.templates.TemplateResponse)
+reload_javascript = partial(load_javascript, gradio.routes.templates.TemplateResponse)
reload_javascript()
diff --git a/style.css b/style.css
index 5d2bacc99..26ae36a5c 100644
--- a/style.css
+++ b/style.css
@@ -477,7 +477,7 @@ input[type="range"]{
padding: 0;
}
-#refresh_sd_model_checkpoint, #refresh_sd_hypernetwork, #refresh_train_hypernetwork_name, #refresh_train_embedding_name, #refresh_localization, #refresh_aesthetic_embeddings{
+#refresh_sd_model_checkpoint, #refresh_sd_hypernetwork, #refresh_train_hypernetwork_name, #refresh_train_embedding_name, #refresh_localization{
max-width: 2.5em;
min-width: 2.5em;
height: 2.4em;
diff --git a/webui.py b/webui.py
index 875890641..b1deca1b0 100644
--- a/webui.py
+++ b/webui.py
@@ -71,6 +71,7 @@ def wrap_gradio_gpu_call(func, extra_outputs=None):
return modules.ui.wrap_gradio_call(f, extra_outputs=extra_outputs)
+
def initialize():
modelloader.cleanup_models()
modules.sd_models.setup_model()
@@ -79,9 +80,9 @@ def initialize():
shared.face_restorers.append(modules.face_restoration.FaceRestoration())
modelloader.load_upscalers()
- modules.scripts.load_scripts(os.path.join(script_path, "scripts"))
+ modules.scripts.load_scripts()
- shared.sd_model = modules.sd_models.load_model()
+ modules.sd_models.load_model()
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model)))
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength)
@@ -145,7 +146,7 @@ def webui():
sd_samplers.set_samplers()
print('Reloading Custom Scripts')
- modules.scripts.reload_scripts(os.path.join(script_path, "scripts"))
+ modules.scripts.reload_scripts()
print('Reloading modules: modules.ui')
importlib.reload(modules.ui)
print('Refreshing Model List')