mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-04 13:55:06 +08:00
Merge pull request #3874 from cobryan05/extra_tweak
Extras Tab - Option to upscale before face fix, caching improvements
This commit is contained in:
commit
1fba573d24
@ -1,3 +1,4 @@
|
|||||||
|
from __future__ import annotations
|
||||||
import math
|
import math
|
||||||
import os
|
import os
|
||||||
|
|
||||||
@ -7,6 +8,10 @@ from PIL import Image
|
|||||||
import torch
|
import torch
|
||||||
import tqdm
|
import tqdm
|
||||||
|
|
||||||
|
from typing import Callable, List, OrderedDict, Tuple
|
||||||
|
from functools import partial
|
||||||
|
from dataclasses import dataclass
|
||||||
|
|
||||||
from modules import processing, shared, images, devices, sd_models
|
from modules import processing, shared, images, devices, sd_models
|
||||||
from modules.shared import opts
|
from modules.shared import opts
|
||||||
import modules.gfpgan_model
|
import modules.gfpgan_model
|
||||||
@ -17,10 +22,38 @@ import piexif.helper
|
|||||||
import gradio as gr
|
import gradio as gr
|
||||||
|
|
||||||
|
|
||||||
cached_images = {}
|
class LruCache(OrderedDict):
|
||||||
|
@dataclass(frozen=True)
|
||||||
|
class Key:
|
||||||
|
image_hash: int
|
||||||
|
info_hash: int
|
||||||
|
args_hash: int
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class Value:
|
||||||
|
image: Image.Image
|
||||||
|
info: str
|
||||||
|
|
||||||
|
def __init__(self, max_size: int = 5, *args, **kwargs):
|
||||||
|
super().__init__(*args, **kwargs)
|
||||||
|
self._max_size = max_size
|
||||||
|
|
||||||
|
def get(self, key: LruCache.Key) -> LruCache.Value:
|
||||||
|
ret = super().get(key)
|
||||||
|
if ret is not None:
|
||||||
|
self.move_to_end(key) # Move to end of eviction list
|
||||||
|
return ret
|
||||||
|
|
||||||
|
def put(self, key: LruCache.Key, value: LruCache.Value) -> None:
|
||||||
|
self[key] = value
|
||||||
|
while len(self) > self._max_size:
|
||||||
|
self.popitem(last=False)
|
||||||
|
|
||||||
|
|
||||||
def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility):
|
cached_images: LruCache = LruCache(max_size=5)
|
||||||
|
|
||||||
|
|
||||||
|
def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool):
|
||||||
devices.torch_gc()
|
devices.torch_gc()
|
||||||
|
|
||||||
imageArr = []
|
imageArr = []
|
||||||
@ -56,6 +89,90 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
|
|||||||
else:
|
else:
|
||||||
outpath = opts.outdir_samples or opts.outdir_extras_samples
|
outpath = opts.outdir_samples or opts.outdir_extras_samples
|
||||||
|
|
||||||
|
# Extra operation definitions
|
||||||
|
|
||||||
|
def run_gfpgan(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
|
||||||
|
restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8))
|
||||||
|
res = Image.fromarray(restored_img)
|
||||||
|
|
||||||
|
if gfpgan_visibility < 1.0:
|
||||||
|
res = Image.blend(image, res, gfpgan_visibility)
|
||||||
|
|
||||||
|
info += f"GFPGAN visibility:{round(gfpgan_visibility, 2)}\n"
|
||||||
|
return (res, info)
|
||||||
|
|
||||||
|
def run_codeformer(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
|
||||||
|
restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight)
|
||||||
|
res = Image.fromarray(restored_img)
|
||||||
|
|
||||||
|
if codeformer_visibility < 1.0:
|
||||||
|
res = Image.blend(image, res, codeformer_visibility)
|
||||||
|
|
||||||
|
info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n"
|
||||||
|
return (res, info)
|
||||||
|
|
||||||
|
def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop):
|
||||||
|
upscaler = shared.sd_upscalers[scaler_index]
|
||||||
|
res = upscaler.scaler.upscale(image, resize, upscaler.data_path)
|
||||||
|
if mode == 1 and crop:
|
||||||
|
cropped = Image.new("RGB", (resize_w, resize_h))
|
||||||
|
cropped.paste(res, box=(resize_w // 2 - res.width // 2, resize_h // 2 - res.height // 2))
|
||||||
|
res = cropped
|
||||||
|
return res
|
||||||
|
|
||||||
|
def run_prepare_crop(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
|
||||||
|
# Actual crop happens in run_upscalers_blend, this just sets upscaling_resize and adds info text
|
||||||
|
nonlocal upscaling_resize
|
||||||
|
if resize_mode == 1:
|
||||||
|
upscaling_resize = max(upscaling_resize_w/image.width, upscaling_resize_h/image.height)
|
||||||
|
crop_info = " (crop)" if upscaling_crop else ""
|
||||||
|
info += f"Resize to: {upscaling_resize_w:g}x{upscaling_resize_h:g}{crop_info}\n"
|
||||||
|
return (image, info)
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class UpscaleParams:
|
||||||
|
upscaler_idx: int
|
||||||
|
blend_alpha: float
|
||||||
|
|
||||||
|
def run_upscalers_blend(params: List[UpscaleParams], image: Image.Image, info: str) -> Tuple[Image.Image, str]:
|
||||||
|
blended_result: Image.Image = None
|
||||||
|
for upscaler in params:
|
||||||
|
upscale_args = (upscaler.upscaler_idx, upscaling_resize, resize_mode,
|
||||||
|
upscaling_resize_w, upscaling_resize_h, upscaling_crop)
|
||||||
|
cache_key = LruCache.Key(image_hash=hash(np.array(image.getdata()).tobytes()),
|
||||||
|
info_hash=hash(info),
|
||||||
|
args_hash=hash(upscale_args))
|
||||||
|
cached_entry = cached_images.get(cache_key)
|
||||||
|
if cached_entry is None:
|
||||||
|
res = upscale(image, *upscale_args)
|
||||||
|
info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {upscaler.blend_alpha}, model:{shared.sd_upscalers[upscaler.upscaler_idx].name}\n"
|
||||||
|
cached_images.put(cache_key, LruCache.Value(image=res, info=info))
|
||||||
|
else:
|
||||||
|
res, info = cached_entry.image, cached_entry.info
|
||||||
|
|
||||||
|
if blended_result is None:
|
||||||
|
blended_result = res
|
||||||
|
else:
|
||||||
|
blended_result = Image.blend(blended_result, res, upscaler.blend_alpha)
|
||||||
|
return (blended_result, info)
|
||||||
|
|
||||||
|
# Build a list of operations to run
|
||||||
|
facefix_ops: List[Callable] = []
|
||||||
|
facefix_ops += [run_gfpgan] if gfpgan_visibility > 0 else []
|
||||||
|
facefix_ops += [run_codeformer] if codeformer_visibility > 0 else []
|
||||||
|
|
||||||
|
upscale_ops: List[Callable] = []
|
||||||
|
upscale_ops += [run_prepare_crop] if resize_mode == 1 else []
|
||||||
|
|
||||||
|
if upscaling_resize != 0:
|
||||||
|
step_params: List[UpscaleParams] = []
|
||||||
|
step_params.append(UpscaleParams(upscaler_idx=extras_upscaler_1, blend_alpha=1.0))
|
||||||
|
if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0:
|
||||||
|
step_params.append(UpscaleParams(upscaler_idx=extras_upscaler_2, blend_alpha=extras_upscaler_2_visibility))
|
||||||
|
|
||||||
|
upscale_ops.append(partial(run_upscalers_blend, step_params))
|
||||||
|
|
||||||
|
extras_ops: List[Callable] = (upscale_ops + facefix_ops) if upscale_first else (facefix_ops + upscale_ops)
|
||||||
|
|
||||||
for image, image_name in zip(imageArr, imageNameArr):
|
for image, image_name in zip(imageArr, imageNameArr):
|
||||||
if image is None:
|
if image is None:
|
||||||
@ -64,63 +181,9 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
|
|||||||
|
|
||||||
image = image.convert("RGB")
|
image = image.convert("RGB")
|
||||||
info = ""
|
info = ""
|
||||||
|
# Run each operation on each image
|
||||||
if gfpgan_visibility > 0:
|
for op in extras_ops:
|
||||||
restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8))
|
image, info = op(image, info)
|
||||||
res = Image.fromarray(restored_img)
|
|
||||||
|
|
||||||
if gfpgan_visibility < 1.0:
|
|
||||||
res = Image.blend(image, res, gfpgan_visibility)
|
|
||||||
|
|
||||||
info += f"GFPGAN visibility:{round(gfpgan_visibility, 2)}\n"
|
|
||||||
image = res
|
|
||||||
|
|
||||||
if codeformer_visibility > 0:
|
|
||||||
restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight)
|
|
||||||
res = Image.fromarray(restored_img)
|
|
||||||
|
|
||||||
if codeformer_visibility < 1.0:
|
|
||||||
res = Image.blend(image, res, codeformer_visibility)
|
|
||||||
|
|
||||||
info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n"
|
|
||||||
image = res
|
|
||||||
|
|
||||||
if resize_mode == 1:
|
|
||||||
upscaling_resize = max(upscaling_resize_w/image.width, upscaling_resize_h/image.height)
|
|
||||||
crop_info = " (crop)" if upscaling_crop else ""
|
|
||||||
info += f"Resize to: {upscaling_resize_w:g}x{upscaling_resize_h:g}{crop_info}\n"
|
|
||||||
|
|
||||||
if upscaling_resize != 1.0:
|
|
||||||
def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop):
|
|
||||||
small = image.crop((image.width // 2, image.height // 2, image.width // 2 + 10, image.height // 2 + 10))
|
|
||||||
pixels = tuple(np.array(small).flatten().tolist())
|
|
||||||
key = (resize, scaler_index, image.width, image.height, gfpgan_visibility, codeformer_visibility, codeformer_weight,
|
|
||||||
resize_mode, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop) + pixels
|
|
||||||
|
|
||||||
c = cached_images.get(key)
|
|
||||||
if c is None:
|
|
||||||
upscaler = shared.sd_upscalers[scaler_index]
|
|
||||||
c = upscaler.scaler.upscale(image, resize, upscaler.data_path)
|
|
||||||
if mode == 1 and crop:
|
|
||||||
cropped = Image.new("RGB", (resize_w, resize_h))
|
|
||||||
cropped.paste(c, box=(resize_w // 2 - c.width // 2, resize_h // 2 - c.height // 2))
|
|
||||||
c = cropped
|
|
||||||
cached_images[key] = c
|
|
||||||
|
|
||||||
return c
|
|
||||||
|
|
||||||
info += f"Upscale: {round(upscaling_resize, 3)}, model:{shared.sd_upscalers[extras_upscaler_1].name}\n"
|
|
||||||
res = upscale(image, extras_upscaler_1, upscaling_resize, resize_mode, upscaling_resize_w, upscaling_resize_h, upscaling_crop)
|
|
||||||
|
|
||||||
if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0:
|
|
||||||
res2 = upscale(image, extras_upscaler_2, upscaling_resize, resize_mode, upscaling_resize_w, upscaling_resize_h, upscaling_crop)
|
|
||||||
info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {round(extras_upscaler_2_visibility, 3)}, model:{shared.sd_upscalers[extras_upscaler_2].name}\n"
|
|
||||||
res = Image.blend(res, res2, extras_upscaler_2_visibility)
|
|
||||||
|
|
||||||
image = res
|
|
||||||
|
|
||||||
while len(cached_images) > 2:
|
|
||||||
del cached_images[next(iter(cached_images.keys()))]
|
|
||||||
|
|
||||||
if opts.use_original_name_batch and image_name != None:
|
if opts.use_original_name_batch and image_name != None:
|
||||||
basename = os.path.splitext(os.path.basename(image_name))[0]
|
basename = os.path.splitext(os.path.basename(image_name))[0]
|
||||||
@ -141,6 +204,9 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
|
|||||||
|
|
||||||
return outputs, plaintext_to_html(info), ''
|
return outputs, plaintext_to_html(info), ''
|
||||||
|
|
||||||
|
def clear_cache():
|
||||||
|
cached_images.clear()
|
||||||
|
|
||||||
|
|
||||||
def run_pnginfo(image):
|
def run_pnginfo(image):
|
||||||
if image is None:
|
if image is None:
|
||||||
|
@ -1119,6 +1119,9 @@ def create_ui(wrap_gradio_gpu_call):
|
|||||||
codeformer_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer visibility", value=0, interactive=modules.codeformer_model.have_codeformer)
|
codeformer_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer visibility", value=0, interactive=modules.codeformer_model.have_codeformer)
|
||||||
codeformer_weight = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer weight (0 = maximum effect, 1 = minimum effect)", value=0, interactive=modules.codeformer_model.have_codeformer)
|
codeformer_weight = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer weight (0 = maximum effect, 1 = minimum effect)", value=0, interactive=modules.codeformer_model.have_codeformer)
|
||||||
|
|
||||||
|
with gr.Group():
|
||||||
|
upscale_before_face_fix = gr.Checkbox(label='Upscale Before Restoring Faces', value=False)
|
||||||
|
|
||||||
submit = gr.Button('Generate', elem_id="extras_generate", variant='primary')
|
submit = gr.Button('Generate', elem_id="extras_generate", variant='primary')
|
||||||
|
|
||||||
with gr.Column(variant='panel'):
|
with gr.Column(variant='panel'):
|
||||||
@ -1152,6 +1155,7 @@ def create_ui(wrap_gradio_gpu_call):
|
|||||||
extras_upscaler_1,
|
extras_upscaler_1,
|
||||||
extras_upscaler_2,
|
extras_upscaler_2,
|
||||||
extras_upscaler_2_visibility,
|
extras_upscaler_2_visibility,
|
||||||
|
upscale_before_face_fix,
|
||||||
],
|
],
|
||||||
outputs=[
|
outputs=[
|
||||||
result_images,
|
result_images,
|
||||||
@ -1174,6 +1178,11 @@ def create_ui(wrap_gradio_gpu_call):
|
|||||||
outputs=[init_img_with_mask],
|
outputs=[init_img_with_mask],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
extras_image.change(
|
||||||
|
fn=modules.extras.clear_cache,
|
||||||
|
inputs=[], outputs=[]
|
||||||
|
)
|
||||||
|
|
||||||
with gr.Blocks(analytics_enabled=False) as pnginfo_interface:
|
with gr.Blocks(analytics_enabled=False) as pnginfo_interface:
|
||||||
with gr.Row().style(equal_height=False):
|
with gr.Row().style(equal_height=False):
|
||||||
with gr.Column(variant='panel'):
|
with gr.Column(variant='panel'):
|
||||||
|
Loading…
Reference in New Issue
Block a user