From 1fbb6f9ebe48326a3b12ecf611105dbc4a46891e Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Mon, 9 Jan 2023 23:35:40 +0300 Subject: [PATCH] make a dropdown for prompt template selection --- modules/hypernetworks/hypernetwork.py | 7 ++-- modules/shared.py | 1 + .../textual_inversion/textual_inversion.py | 35 ++++++++++++++----- modules/ui.py | 11 ++++-- webui.py | 3 ++ 5 files changed, 45 insertions(+), 12 deletions(-) diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 32c67ccce..ea3f1db94 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -24,6 +24,7 @@ from statistics import stdev, mean optimizer_dict = {optim_name : cls_obj for optim_name, cls_obj in inspect.getmembers(torch.optim, inspect.isclass) if optim_name != "Optimizer"} + class HypernetworkModule(torch.nn.Module): multiplier = 1.0 activation_dict = { @@ -403,13 +404,15 @@ def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, shared.reload_hypernetworks() -def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): +def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_hypernetwork_every, template_filename, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): # images allows training previews to have infotext. Importing it at the top causes a circular import problem. from modules import images save_hypernetwork_every = save_hypernetwork_every or 0 create_image_every = create_image_every or 0 - textual_inversion.validate_train_inputs(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps, save_hypernetwork_every, create_image_every, log_directory, name="hypernetwork") + template_file = textual_inversion.textual_inversion_templates.get(template_filename, None) + textual_inversion.validate_train_inputs(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, template_file, template_filename, steps, save_hypernetwork_every, create_image_every, log_directory, name="hypernetwork") + template_file = template_file.path path = shared.hypernetworks.get(hypernetwork_name, None) shared.loaded_hypernetwork = Hypernetwork() diff --git a/modules/shared.py b/modules/shared.py index a1e102019..aa37c8ce8 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -33,6 +33,7 @@ parser.add_argument("--no-half-vae", action='store_true', help="do not switch th parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)") parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI") parser.add_argument("--embeddings-dir", type=str, default=os.path.join(script_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)") +parser.add_argument("--textual-inversion-templates-dir", type=str, default=os.path.join(script_path, 'textual_inversion_templates'), help="directory with textual inversion templates") parser.add_argument("--hypernetwork-dir", type=str, default=os.path.join(models_path, 'hypernetworks'), help="hypernetwork directory") parser.add_argument("--localizations-dir", type=str, default=os.path.join(script_path, 'localizations'), help="localizations directory") parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui") diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 14be2c967..5420903fd 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -2,6 +2,7 @@ import os import sys import traceback import inspect +from collections import namedtuple import torch import tqdm @@ -15,12 +16,26 @@ from modules import shared, devices, sd_hijack, processing, sd_models, images, s import modules.textual_inversion.dataset from modules.textual_inversion.learn_schedule import LearnRateScheduler -from modules.textual_inversion.image_embedding import (embedding_to_b64, embedding_from_b64, - insert_image_data_embed, extract_image_data_embed, - caption_image_overlay) +from modules.textual_inversion.image_embedding import embedding_to_b64, embedding_from_b64, insert_image_data_embed, extract_image_data_embed, caption_image_overlay from modules.textual_inversion.logging import save_settings_to_file +TextualInversionTemplate = namedtuple("TextualInversionTemplate", ["name", "path"]) +textual_inversion_templates = {} + + +def list_textual_inversion_templates(): + textual_inversion_templates.clear() + + for root, dirs, fns in os.walk(shared.cmd_opts.textual_inversion_templates_dir): + for fn in fns: + path = os.path.join(root, fn) + + textual_inversion_templates[fn] = TextualInversionTemplate(fn, path) + + return textual_inversion_templates + + class Embedding: def __init__(self, vec, name, step=None): self.vec = vec @@ -274,7 +289,7 @@ def write_loss(log_directory, filename, step, epoch_len, values): }) -def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps, save_model_every, create_image_every, log_directory, name="embedding"): +def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, data_root, template_file, template_filename, steps, save_model_every, create_image_every, log_directory, name="embedding"): assert model_name, f"{name} not selected" assert learn_rate, "Learning rate is empty or 0" assert isinstance(batch_size, int), "Batch size must be integer" @@ -284,8 +299,9 @@ def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, dat assert data_root, "Dataset directory is empty" assert os.path.isdir(data_root), "Dataset directory doesn't exist" assert os.listdir(data_root), "Dataset directory is empty" - assert template_file, "Prompt template file is empty" - assert os.path.isfile(template_file), "Prompt template file doesn't exist" + assert template_filename, "Prompt template file not selected" + assert template_file, f"Prompt template file {template_filename} not found" + assert os.path.isfile(template_file.path), f"Prompt template file {template_filename} doesn't exist" assert steps, "Max steps is empty or 0" assert isinstance(steps, int), "Max steps must be integer" assert steps > 0, "Max steps must be positive" @@ -296,10 +312,13 @@ def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, dat if save_model_every or create_image_every: assert log_directory, "Log directory is empty" -def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): + +def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_embedding_every, template_filename, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): save_embedding_every = save_embedding_every or 0 create_image_every = create_image_every or 0 - validate_train_inputs(embedding_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps, save_embedding_every, create_image_every, log_directory, name="embedding") + template_file = textual_inversion_templates.get(template_filename, None) + validate_train_inputs(embedding_name, learn_rate, batch_size, gradient_step, data_root, template_file, template_filename, steps, save_embedding_every, create_image_every, log_directory, name="embedding") + template_file = template_file.path shared.state.job = "train-embedding" shared.state.textinfo = "Initializing textual inversion training..." diff --git a/modules/ui.py b/modules/ui.py index ddfe1b1a1..b6079aeca 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -37,7 +37,7 @@ from modules import prompt_parser from modules.images import save_image from modules.sd_hijack import model_hijack from modules.sd_samplers import samplers, samplers_for_img2img -import modules.textual_inversion.ui +from modules.textual_inversion import textual_inversion import modules.hypernetworks.ui from modules.generation_parameters_copypaste import image_from_url_text @@ -1322,6 +1322,9 @@ def create_ui(): outputs=[process_focal_crop_row], ) + def get_textual_inversion_template_names(): + return sorted([x for x in textual_inversion.textual_inversion_templates]) + with gr.Tab(label="Train"): gr.HTML(value="

Train an embedding or Hypernetwork; you must specify a directory with a set of 1:1 ratio images [wiki]

") with FormRow(): @@ -1345,7 +1348,11 @@ def create_ui(): dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images", elem_id="train_dataset_directory") log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion", elem_id="train_log_directory") - template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt"), elem_id="train_template_file") + + with FormRow(): + template_file = gr.Dropdown(label='Prompt template', value="style_filewords.txt", elem_id="train_template_file", choices=get_textual_inversion_template_names()) + create_refresh_button(template_file, textual_inversion.list_textual_inversion_templates, lambda: {"choices": get_textual_inversion_template_names()}, "refrsh_train_template_file") + training_width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="train_training_width") training_height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="train_training_height") varsize = gr.Checkbox(label="Do not resize images", value=False, elem_id="train_varsize") diff --git a/webui.py b/webui.py index 8737e593f..47d372c79 100644 --- a/webui.py +++ b/webui.py @@ -33,6 +33,7 @@ import modules.sd_models import modules.sd_vae import modules.txt2img import modules.script_callbacks +import modules.textual_inversion.textual_inversion import modules.ui from modules import modelloader @@ -67,6 +68,8 @@ def initialize(): modules.sd_vae.refresh_vae_list() + modules.textual_inversion.textual_inversion.list_textual_inversion_templates() + try: modules.sd_models.load_model() except Exception as e: